
The equation ${{x}^{2}}+ax-{{a}^{2}}-1=0$ will have roots of opposite signs if:A) $a\in \left( -\infty ,\infty \right)$B) $a\in \left[ -1,1 \right]$C) $a\in \left( -\infty ,-1 \right)\cup \left( 1,\infty \right)$D) None of these
Answer
513k+ views
Hint: Here we will use properties of roots of the quadratic equation. If the roots are of the opposite sign then their product will be negative. And product = $\dfrac{\text{constant}}{\text{coefficient of }{{x}^{2}}}$ So, Product is less than 0.
Complete step-by-step solution:
Note: In these types of problems where nature of root and equation is given. We first try to connect the given nature of roots to coefficients and product or sum of roots whichever is needed. Then check inequality after assigning the required values. Also, here we have written as if signs of roots are opposite then the product of roots will be negative, as with the same sign product of roots will be positive. As per the property it is like (-)(-)=(+) and (+)(+)=(+).
Complete step-by-step solution:
Given: ${{x}^{2}}+ax-{{a}^{2}}-1=0$ will have roots of the opposite signs.
${{x}^{2}}+ax-({{a}^{2}}+1)=0$ as roots have opposite signs,
Compare the given equation with the standard form-
$ a{{x}^{2}}+bx+c=0 $
$ \therefore a=1 $
$ \therefore b=a $
$ \therefore c=-({{a}^{2}}+1) $
Product of roots is less than zero by property -
$\Rightarrow \alpha \times \beta <0\text{ and }D>0$
$\Rightarrow \dfrac{c}{a}<0\text{ }and\text{ }{{b}^{2}}-4ac>0$
Put values in the above conditions -
$\Rightarrow \dfrac{-\left( {{a}^{2}}+1 \right)}{1}<0\text{ }and\text{ }{{\text{a}}^{2}}-4(1)\{-({{a}^{2}}+1)\}>0\text{ }$
By simplification -
$\Rightarrow \left( {{a}^{2}}+1 \right)>0\text{ and }{{\text{a}}^{2}}+4{{a}^{2}}+4>0$
$\Rightarrow a\in R\text{ and 5}{{\text{a}}^{2}}+4>0$
$Now,\text{ a}\in \text{R and }{{\text{a}}^{2}}>-\dfrac{4}{5}$
So, in both cases, $a\in R$ which means $a\in \left( -\infty ,\infty \right)$
Hence option (B) is the correct answer.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
