Answer
Verified
429.3k+ views
Hint: Given equation \[{x^2} - px + q = 0\] is of the form \[a{x^2} + bx + c = 0\] . This is a quadratic equation. The nature of the roots of a quadratic equation depends on the term \[{b^2} - 4ac\] . So let’s check it with the given equation.
Complete step-by-step answer:
Now the given equation is \[{x^2} - px + q = 0\]. Comparing this with the general quadratic equation \[a{x^2} + bx + c = 0\] we get a=1, b=-p and c=q. Also it is given that \[p,q \in R\].
The term that decides the nature of the roots of the equation is,
\[
{b^2} - 4ac \Rightarrow {\left( { - p} \right)^2} - 4 \times 1 \times q \\
\Rightarrow {p^2} - 4q \\
\]
Now if \[{p^2} - 4q < 0\] then the given equation has no real roots because, roots of the equation is given by,
\[
\Rightarrow \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
\Rightarrow \dfrac{{ - \left( { - p} \right) \pm \sqrt {{{\left( { - p} \right)}^2} - 4 \times 1 \times q} }}{{2\left( { - p} \right)}} \\
\]
\[ \Rightarrow \dfrac{{p \pm \sqrt {{p^2} - 4q} }}{{ - 2p}}\]
Now if the term in the square root is negative or less than zero then the roots so obtained are imaginary. Thus the equation has no real roots then.
Note: We will also have a look on other conditions of the nature of the roots .
Complete step-by-step answer:
Now the given equation is \[{x^2} - px + q = 0\]. Comparing this with the general quadratic equation \[a{x^2} + bx + c = 0\] we get a=1, b=-p and c=q. Also it is given that \[p,q \in R\].
The term that decides the nature of the roots of the equation is,
\[
{b^2} - 4ac \Rightarrow {\left( { - p} \right)^2} - 4 \times 1 \times q \\
\Rightarrow {p^2} - 4q \\
\]
Now if \[{p^2} - 4q < 0\] then the given equation has no real roots because, roots of the equation is given by,
\[
\Rightarrow \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
\Rightarrow \dfrac{{ - \left( { - p} \right) \pm \sqrt {{{\left( { - p} \right)}^2} - 4 \times 1 \times q} }}{{2\left( { - p} \right)}} \\
\]
\[ \Rightarrow \dfrac{{p \pm \sqrt {{p^2} - 4q} }}{{ - 2p}}\]
Now if the term in the square root is negative or less than zero then the roots so obtained are imaginary. Thus the equation has no real roots then.
Note: We will also have a look on other conditions of the nature of the roots .
If \[{b^2} - 4ac\]>0 | The roots are real and unequal. |
If \[{b^2} - 4ac\]=0 | The roots are real and equal. |
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE