
The equation ${{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}$ has a real solution if,
(a) $a\in \left[ -1,1 \right]$
(b) $a\in \left[ -1,-\dfrac{1}{2} \right]$
(c) $a\in \left[ \dfrac{1}{2},1 \right]\cup \left[ -1,-\dfrac{1}{2} \right]$
(d) $a\in \left[ \dfrac{1}{2},1 \right]$
Answer
565.5k+ views
Hint: Write ${{\sin }^{6}}x+{{\cos }^{6}}x$ in the form of ${{a}^{3}}+{{b}^{3}}$ and apply the identity, ${{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)$. Use the trigonometric identity, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ to simplify the expression. Now, use the formula, $2\sin \theta .\cos \theta =\sin 2\theta $ to convert L.H.S to a function containing a single trigonometric function. Now use the information, $0\le {{\sin }^{2}}\theta \le 1$ to find the range of ‘a’.
Complete step-by-step solution:
We have been provided with the equation, ${{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}$. Let us consider the L.H.S. = ${{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}$. This can be written as,
$\Rightarrow L.H.S={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know that, ${{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)$, therefore, we have,
$\Rightarrow L.H.S={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)$
Applying the identity, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we get,
$\begin{align}
& \Rightarrow L.H.S=1-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow L.H.S=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
The above relation can be written as,
$\begin{align}
& \Rightarrow L.H.S=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow L.H.S=1-\dfrac{3}{4}\times {{\left( 2\sin x\cos x \right)}^{2}} \\
\end{align}$
We know that $2\sin x\cos x=\sin 2x$, therefore we have,
$\Rightarrow L.H.S=1-\dfrac{3}{4}{{\sin }^{2}}2x$
So, we can write the original equation as,
$1-\dfrac{3}{4}{{\sin }^{2}}2x={{a}^{2}}$
To find the range of a, we must find the range of $1-\dfrac{3}{4}{{\sin }^{2}}2x$. We know that,
$0\le {{\sin }^{2}}2x\le 1$, because the range of sine function is [-1, 1]. Multiplying $\dfrac{3}{4}$, we get,
$\Rightarrow 0\le \dfrac{3}{4}{{\sin }^{2}}2x\le \dfrac{3}{4}$
Now, multiplying -1 and reversing the direction of inequality, we get,
$\begin{align}
& \Rightarrow 0\ge -\dfrac{3}{4}{{\sin }^{2}}2x\ge -\dfrac{3}{4} \\
& \Rightarrow -\dfrac{3}{4}\le -\dfrac{3}{4}{{\sin }^{2}}2x\le 0 \\
\end{align}$
Now, adding 1, we get,
$\begin{align}
& \Rightarrow 1-\dfrac{3}{4}\le 1-\dfrac{3}{4}{{\sin }^{2}}2x\le 1+0 \\
& \Rightarrow \dfrac{1}{4}\le {{a}^{2}}\le 1 \\
\end{align}$
Case (i) : When ${{a}^{2}}\ge \dfrac{1}{4}$,
$\begin{align}
& \Rightarrow {{a}^{2}}\ge {{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow a\in \left[ -\infty .-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},\infty \right] \\
\end{align}$
Case (ii) : When ${{a}^{2}}\le 1$,
$\begin{align}
& \Rightarrow {{a}^{2}}\le {{1}^{2}} \\
& \Rightarrow -1\le a\le +1 \\
& \Rightarrow a\in \left[ -1,1 \right] \\
\end{align}$
Since, we have to satisfy both the cases, therefore, to find the values of ‘a’, we need to take the intersection of the above sets of values of ‘a’. Therefore, taking intersection of the set, we get,
$\begin{align}
& a\in \left[ -1,1 \right]\cap \left[ -\infty ,\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},\infty \right] \\
& \Rightarrow a\in \left[ -1,-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},1 \right] \\
\end{align}$
Hence, option (c) is the correct answer.
Note: One may note that when we multiply (-1) with $\dfrac{3}{4}{{\sin }^{2}}2x$, then the direction of inequality gets reversed. This is because when any negative number is multiplied to the inequality, its direction changes. This also happens when we take the reciprocal. You must note that we have to satisfy both cases (i) and case (ii) and therefore, we need to take the intersection of the sets and not the union.
Complete step-by-step solution:
We have been provided with the equation, ${{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}$. Let us consider the L.H.S. = ${{\sin }^{6}}x+{{\cos }^{6}}x={{a}^{2}}$. This can be written as,
$\Rightarrow L.H.S={{\left( {{\sin }^{2}}x \right)}^{3}}+{{\left( {{\cos }^{2}}x \right)}^{3}}$
We know that, ${{a}^{3}}+{{b}^{3}}={{\left( a+b \right)}^{3}}-3ab\left( a+b \right)$, therefore, we have,
$\Rightarrow L.H.S={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{3}}-3{{\sin }^{2}}x{{\cos }^{2}}x\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)$
Applying the identity, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$, we get,
$\begin{align}
& \Rightarrow L.H.S=1-3{{\sin }^{2}}x{{\cos }^{2}}x\times 1 \\
& \Rightarrow L.H.S=1-3{{\sin }^{2}}x{{\cos }^{2}}x \\
\end{align}$
The above relation can be written as,
$\begin{align}
& \Rightarrow L.H.S=1-\dfrac{3}{4}\times 4{{\sin }^{2}}x{{\cos }^{2}}x \\
& \Rightarrow L.H.S=1-\dfrac{3}{4}\times {{\left( 2\sin x\cos x \right)}^{2}} \\
\end{align}$
We know that $2\sin x\cos x=\sin 2x$, therefore we have,
$\Rightarrow L.H.S=1-\dfrac{3}{4}{{\sin }^{2}}2x$
So, we can write the original equation as,
$1-\dfrac{3}{4}{{\sin }^{2}}2x={{a}^{2}}$
To find the range of a, we must find the range of $1-\dfrac{3}{4}{{\sin }^{2}}2x$. We know that,
$0\le {{\sin }^{2}}2x\le 1$, because the range of sine function is [-1, 1]. Multiplying $\dfrac{3}{4}$, we get,
$\Rightarrow 0\le \dfrac{3}{4}{{\sin }^{2}}2x\le \dfrac{3}{4}$
Now, multiplying -1 and reversing the direction of inequality, we get,
$\begin{align}
& \Rightarrow 0\ge -\dfrac{3}{4}{{\sin }^{2}}2x\ge -\dfrac{3}{4} \\
& \Rightarrow -\dfrac{3}{4}\le -\dfrac{3}{4}{{\sin }^{2}}2x\le 0 \\
\end{align}$
Now, adding 1, we get,
$\begin{align}
& \Rightarrow 1-\dfrac{3}{4}\le 1-\dfrac{3}{4}{{\sin }^{2}}2x\le 1+0 \\
& \Rightarrow \dfrac{1}{4}\le {{a}^{2}}\le 1 \\
\end{align}$
Case (i) : When ${{a}^{2}}\ge \dfrac{1}{4}$,
$\begin{align}
& \Rightarrow {{a}^{2}}\ge {{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow a\in \left[ -\infty .-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},\infty \right] \\
\end{align}$
Case (ii) : When ${{a}^{2}}\le 1$,
$\begin{align}
& \Rightarrow {{a}^{2}}\le {{1}^{2}} \\
& \Rightarrow -1\le a\le +1 \\
& \Rightarrow a\in \left[ -1,1 \right] \\
\end{align}$
Since, we have to satisfy both the cases, therefore, to find the values of ‘a’, we need to take the intersection of the above sets of values of ‘a’. Therefore, taking intersection of the set, we get,
$\begin{align}
& a\in \left[ -1,1 \right]\cap \left[ -\infty ,\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},\infty \right] \\
& \Rightarrow a\in \left[ -1,-\dfrac{1}{2} \right]\cup \left[ \dfrac{1}{2},1 \right] \\
\end{align}$
Hence, option (c) is the correct answer.
Note: One may note that when we multiply (-1) with $\dfrac{3}{4}{{\sin }^{2}}2x$, then the direction of inequality gets reversed. This is because when any negative number is multiplied to the inequality, its direction changes. This also happens when we take the reciprocal. You must note that we have to satisfy both cases (i) and case (ii) and therefore, we need to take the intersection of the sets and not the union.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

