
The equation of ellipse for which, distance between directrices is $\dfrac{{25}}{2}$ and the minor axis is 6, is
A. $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$
B. $\dfrac{{{x^2}}}{{225}} + \dfrac{{{y^2}}}{9} = 16$
C. $\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{{25}} = 1$
D. $\dfrac{{{x^2}}}{{625}} + \dfrac{{{y^2}}}{{81}} = 1$
Answer
588k+ views
Hint:
First let the equations of ellipse be of the form $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ or $\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1$. Next find the value of $a$ in terms of $e$ using the formula of length of directrix, which is $\dfrac{{2a}}{e}$, where $a$ is half the major the axis and $e$ is the eccentricity of the ellipse. Next, use the given length of minor axis $b$ and the condition ${b^2} = {a^2}\left( {1 - {e^2}} \right)$ to find the value of $e$. Substitute the value of $e$ to find the value of $a$ and hence the equation of ellipse.
Complete step by step solution:
Let the equation of the ellipse are $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ or $\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1$
We are given that the distance between two directrices is $\dfrac{{25}}{2}$.
Then, the length of the directrix is $\dfrac{{2a}}{e}$, where $a$ is half the major the axis and $e$ is the eccentricity of the ellipse.
Therefore,
$
\dfrac{{25}}{2} = \dfrac{{2a}}{e} \\
\Rightarrow \dfrac{a}{e} = \dfrac{{25}}{4} \\
$
$a = \dfrac{{25}}{4}e$
Also, we know that ${b^2} = {a^2}\left( {1 - {e^2}} \right)$, where $b$ is half of the minor axis, $a$ is half the major the axis and $e$ is the eccentricity of the ellipse.
We are given that 6 is the length of the major axis, then $b = 3$
This implies,
$
{3^2} = {a^2} - {a^2}{e^2} \\
\Rightarrow 9 = {a^2} - {a^2}{e^2} \\
$
On substituting the value of $a$ we will get,
$
9 = {\left( {\dfrac{{25}}{4}e} \right)^2} - {\left( {\dfrac{{25}}{4}e} \right)^2}{e^2} \\
\Rightarrow 9 = \dfrac{{625{e^2} - 625{e^4}}}{{16}} \\
\Rightarrow 625{e^4} - 625{e^2} + 144 = 0 \\
$
Factorise the above equation.
$
625{e^4} - 400{e^2} - 225{e^2} + 144 = 0 \\
\Rightarrow 25{e^2}\left( {25{e^2} - 16} \right) - 9\left( {25{e^2} - 16} \right) = 0 \\
\Rightarrow \left( {25{e^2} - 9} \right)\left( {25{e^2} - 16} \right) = 0 \\
$
Equate each factor to 0 to find the value of $e$
$
\left( {25{e^2} - 9} \right) = 0 \\
\Rightarrow {e^2} = \dfrac{9}{{25}} \\
\Rightarrow e = \dfrac{3}{5} \\
$
$
\left( {25{e^2} - 16} \right) = 0 \\
\Rightarrow {e^2} = \dfrac{{16}}{{25}} \\
\Rightarrow e = \dfrac{4}{5} \\
$
When $e = \dfrac{3}{5}$, then
$
a = \dfrac{{25}}{4}\left( {\dfrac{3}{5}} \right) \\
a = \dfrac{{15}}{4} \\
$
Then, the equation of ellipse will be
$
\dfrac{{{x^2}}}{{{{\left( {\dfrac{{15}}{4}} \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( 3 \right)}^2}}} = 1 \\
\Rightarrow \dfrac{{16{x^2}}}{{225}} + \dfrac{{{y^2}}}{9} = 1 \\
$
Or
$
\dfrac{{{x^2}}}{{{{\left( 3 \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( {\dfrac{{15}}{4}} \right)}^2}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{9} + \dfrac{{16{y^2}}}{{225}} = 1 \\
$
If $e = \dfrac{4}{5}$, then
$
a = \dfrac{{25}}{4}\left( {\dfrac{4}{5}} \right) \\
a = 5 \\
$
Then, the equation of the ellipse is
$
\dfrac{{{x^2}}}{{{{\left( 5 \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( 3 \right)}^2}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1 \\
$
But, major axis could be $y$ axis and minor could be $y$ axis.
Then the equation of ellipse will also be
$
\dfrac{{{x^2}}}{{{{\left( 3 \right)}^2}}} + \dfrac{{{y^2}}}{{{5^2}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{{25}} = 1 \\
$
Hence, option A and C are correct.
Note:
The standard equation of the ellipses are $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ or $\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1$, where $a > b$.
When the denominator corresponding to $x$ is greater, then the major axis is along the $x$ axis and if denominator corresponding to the $y$ axis is the major axis.
First let the equations of ellipse be of the form $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ or $\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1$. Next find the value of $a$ in terms of $e$ using the formula of length of directrix, which is $\dfrac{{2a}}{e}$, where $a$ is half the major the axis and $e$ is the eccentricity of the ellipse. Next, use the given length of minor axis $b$ and the condition ${b^2} = {a^2}\left( {1 - {e^2}} \right)$ to find the value of $e$. Substitute the value of $e$ to find the value of $a$ and hence the equation of ellipse.
Complete step by step solution:
Let the equation of the ellipse are $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ or $\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1$
We are given that the distance between two directrices is $\dfrac{{25}}{2}$.
Then, the length of the directrix is $\dfrac{{2a}}{e}$, where $a$ is half the major the axis and $e$ is the eccentricity of the ellipse.
Therefore,
$
\dfrac{{25}}{2} = \dfrac{{2a}}{e} \\
\Rightarrow \dfrac{a}{e} = \dfrac{{25}}{4} \\
$
$a = \dfrac{{25}}{4}e$
Also, we know that ${b^2} = {a^2}\left( {1 - {e^2}} \right)$, where $b$ is half of the minor axis, $a$ is half the major the axis and $e$ is the eccentricity of the ellipse.
We are given that 6 is the length of the major axis, then $b = 3$
This implies,
$
{3^2} = {a^2} - {a^2}{e^2} \\
\Rightarrow 9 = {a^2} - {a^2}{e^2} \\
$
On substituting the value of $a$ we will get,
$
9 = {\left( {\dfrac{{25}}{4}e} \right)^2} - {\left( {\dfrac{{25}}{4}e} \right)^2}{e^2} \\
\Rightarrow 9 = \dfrac{{625{e^2} - 625{e^4}}}{{16}} \\
\Rightarrow 625{e^4} - 625{e^2} + 144 = 0 \\
$
Factorise the above equation.
$
625{e^4} - 400{e^2} - 225{e^2} + 144 = 0 \\
\Rightarrow 25{e^2}\left( {25{e^2} - 16} \right) - 9\left( {25{e^2} - 16} \right) = 0 \\
\Rightarrow \left( {25{e^2} - 9} \right)\left( {25{e^2} - 16} \right) = 0 \\
$
Equate each factor to 0 to find the value of $e$
$
\left( {25{e^2} - 9} \right) = 0 \\
\Rightarrow {e^2} = \dfrac{9}{{25}} \\
\Rightarrow e = \dfrac{3}{5} \\
$
$
\left( {25{e^2} - 16} \right) = 0 \\
\Rightarrow {e^2} = \dfrac{{16}}{{25}} \\
\Rightarrow e = \dfrac{4}{5} \\
$
When $e = \dfrac{3}{5}$, then
$
a = \dfrac{{25}}{4}\left( {\dfrac{3}{5}} \right) \\
a = \dfrac{{15}}{4} \\
$
Then, the equation of ellipse will be
$
\dfrac{{{x^2}}}{{{{\left( {\dfrac{{15}}{4}} \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( 3 \right)}^2}}} = 1 \\
\Rightarrow \dfrac{{16{x^2}}}{{225}} + \dfrac{{{y^2}}}{9} = 1 \\
$
Or
$
\dfrac{{{x^2}}}{{{{\left( 3 \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( {\dfrac{{15}}{4}} \right)}^2}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{9} + \dfrac{{16{y^2}}}{{225}} = 1 \\
$
If $e = \dfrac{4}{5}$, then
$
a = \dfrac{{25}}{4}\left( {\dfrac{4}{5}} \right) \\
a = 5 \\
$
Then, the equation of the ellipse is
$
\dfrac{{{x^2}}}{{{{\left( 5 \right)}^2}}} + \dfrac{{{y^2}}}{{{{\left( 3 \right)}^2}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1 \\
$
But, major axis could be $y$ axis and minor could be $y$ axis.
Then the equation of ellipse will also be
$
\dfrac{{{x^2}}}{{{{\left( 3 \right)}^2}}} + \dfrac{{{y^2}}}{{{5^2}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{{25}} = 1 \\
$
Hence, option A and C are correct.
Note:
The standard equation of the ellipses are $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ or $\dfrac{{{x^2}}}{{{b^2}}} + \dfrac{{{y^2}}}{{{a^2}}} = 1$, where $a > b$.
When the denominator corresponding to $x$ is greater, then the major axis is along the $x$ axis and if denominator corresponding to the $y$ axis is the major axis.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

