
The equation of $2\cot 2x-3\cot 3x=\tan 2x$ has
A. Two solutions in $\left( 0,\dfrac{\pi }{3} \right)$.
B. One solution in $\left( 0,\dfrac{\pi }{3} \right)$.
C. No solution in $\left( -\infty ,\infty \right)$.
D. None of these
Answer
538.5k+ views
Hint: In this problem we have found the solution for the given equation that is $2\cot 2x-3\cot 3x=\tan 2x$. In this problem we observe the given equation has trigonometric ratios. In the question we have an expression in $\cot $. So we will change $\cot $ into $\tan $ by using the well-known trigonometric formula $\cot x=\dfrac{1}{\tan x}$. Now we will simplify the equation by taking LCM. Then we will get a quadratic equation. To solve the quadratic equation, we will use the quadratic equation formula and simplify it to get the solution for the given equation.
Formula used:
1.$\cot x=\dfrac{1}{\tan x}$.
2.$\tan 2x=\dfrac{2\tan x}{\left( 1-{{\tan }^{2}}x \right)}$.
3. $\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{\left( 1-3{{\tan }^{2}}x \right)}$.
4. Solution for the quadratic equation $a{{x}^{2}}+bx+c=0$ is $x=\dfrac{-b\pm \sqrt{b-4ac}}{2ac}$.
Complete Step by Step Solution:
Given that, $2\cot 2x-3\cot 3x=\tan 2x$.
Now we will change the $\cot x$ into $\tan x$by using the formula $\cot x=\dfrac{1}{\tan x}$, then we will write
$\Rightarrow \dfrac{2}{\tan 2x}-\dfrac{3}{\tan 3x}=\tan 2x$.
We know that trigonometric identity that is $\tan 2x=\dfrac{2{{\tan }^{2}}x}{1-{{\tan }^{2}}x}$. Substituting this formula in the above equation, then we will get
$\Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)}{2\tan x}-\dfrac{3}{\tan 3x}=\tan 2x$.
We have another trigonometric identity that is $\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{\left( 1-3{{\tan }^{2}}x \right)}$ . Again, substituting this formula in the above equation, then we will get
$\Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)}{2\tan x}-\dfrac{3\left( 1-3{{\tan }^{2}}x \right)}{3\tan x-{{\tan }^{3}}x}=\tan 2x$.
Simplifying the above equation, then we will get
$\begin{align}
& \Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)\left( 3-\tan 2x+{{\tan }^{4}}x-3+9{{\tan }^{2}}x \right)}{\tan x\left( 3-{{\tan }^{2}}x \right)}=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\
& \Rightarrow \dfrac{{{\tan }^{{}}}x+5{{\tan }^{2}}x}{\tan x\left( 3-{{\tan }^{2}}x \right)}=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\
& \Rightarrow \left( {{\tan }^{2}}x+5 \right)\left( 1-{{\tan }^{2}}x \right)=2\left( 3-{{\tan }^{2}}x \right) \\
& \Rightarrow {{\tan }^{4}}x+4{{\tan }^{2}}x+1=0 \\
\end{align}$
We can observe that the above equation is quadratic equation in terms of ${{\tan }^{2}}x$, so the solution of the above equation can be written as
$\begin{align}
& {{\tan }^{2}}x=\dfrac{-2\pm \sqrt{4-4}}{2} \\
& \Rightarrow {{\tan }^{2}}x=-1 \\
\end{align}$
we will get the negative solution. Then there is no solution.
Note:
We can also convert the whole given equation in terms of $\sin x$, $\cos x$ by using the well-known formulas $\tan x=\dfrac{\sin x}{\cos x}$, $\cot x=\dfrac{\cos x}{\sin x}$. After substituting these formulas, we will simplify the equation and use trigonometric identities to solve the equation.
Formula used:
1.$\cot x=\dfrac{1}{\tan x}$.
2.$\tan 2x=\dfrac{2\tan x}{\left( 1-{{\tan }^{2}}x \right)}$.
3. $\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{\left( 1-3{{\tan }^{2}}x \right)}$.
4. Solution for the quadratic equation $a{{x}^{2}}+bx+c=0$ is $x=\dfrac{-b\pm \sqrt{b-4ac}}{2ac}$.
Complete Step by Step Solution:
Given that, $2\cot 2x-3\cot 3x=\tan 2x$.
Now we will change the $\cot x$ into $\tan x$by using the formula $\cot x=\dfrac{1}{\tan x}$, then we will write
$\Rightarrow \dfrac{2}{\tan 2x}-\dfrac{3}{\tan 3x}=\tan 2x$.
We know that trigonometric identity that is $\tan 2x=\dfrac{2{{\tan }^{2}}x}{1-{{\tan }^{2}}x}$. Substituting this formula in the above equation, then we will get
$\Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)}{2\tan x}-\dfrac{3}{\tan 3x}=\tan 2x$.
We have another trigonometric identity that is $\tan 3x=\dfrac{3\tan x-{{\tan }^{3}}x}{\left( 1-3{{\tan }^{2}}x \right)}$ . Again, substituting this formula in the above equation, then we will get
$\Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)}{2\tan x}-\dfrac{3\left( 1-3{{\tan }^{2}}x \right)}{3\tan x-{{\tan }^{3}}x}=\tan 2x$.
Simplifying the above equation, then we will get
$\begin{align}
& \Rightarrow \dfrac{2\left( 1-{{\tan }^{2}}x \right)\left( 3-\tan 2x+{{\tan }^{4}}x-3+9{{\tan }^{2}}x \right)}{\tan x\left( 3-{{\tan }^{2}}x \right)}=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\
& \Rightarrow \dfrac{{{\tan }^{{}}}x+5{{\tan }^{2}}x}{\tan x\left( 3-{{\tan }^{2}}x \right)}=\dfrac{2\tan x}{1-{{\tan }^{2}}x} \\
& \Rightarrow \left( {{\tan }^{2}}x+5 \right)\left( 1-{{\tan }^{2}}x \right)=2\left( 3-{{\tan }^{2}}x \right) \\
& \Rightarrow {{\tan }^{4}}x+4{{\tan }^{2}}x+1=0 \\
\end{align}$
We can observe that the above equation is quadratic equation in terms of ${{\tan }^{2}}x$, so the solution of the above equation can be written as
$\begin{align}
& {{\tan }^{2}}x=\dfrac{-2\pm \sqrt{4-4}}{2} \\
& \Rightarrow {{\tan }^{2}}x=-1 \\
\end{align}$
we will get the negative solution. Then there is no solution.
Note:
We can also convert the whole given equation in terms of $\sin x$, $\cos x$ by using the well-known formulas $\tan x=\dfrac{\sin x}{\cos x}$, $\cot x=\dfrac{\cos x}{\sin x}$. After substituting these formulas, we will simplify the equation and use trigonometric identities to solve the equation.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

