
The equation \[\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = 0\] has
A.Exactly two distinct roots
B.One pair of equal real roots
C.Modulus of each root 1
D.Three pairs of equal roots
Answer
582.3k+ views
Hint: Here, we will apply the column transformation \[{C_1} \to {C_1} + {C_2} + {C_3}\] in the left hand side of given determinant and then after taking factor \[1 + x + {x^2}\] common out. Then we will apply row transformations, \[{R_1} \to {R_1} - {R_2}\] and \[{R_2} \to {R_2} - {R_3}\] in the obtained determinant and find the determinant to obtain the required equation.
Complete step-by-step answer:
We are given that the determinant is \[\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = 0\].
Applying column transformation \[{C_1} \to {C_1} + {C_2} + {C_3}\] in the left hand side of above determinant, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&x&{{x^2}} \\
{{x^2} + 1 + x}&1&x \\
{x + {x^2} + 1}&{{x^2}}&1
\end{array}} \right| = 0\]
Taking the factor \[1 + x + {x^2}\] common out from above, we get
\[ \Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&1&x \\
1&{{x^2}}&1
\end{array}} \right| = 0\]
Now, applying row transformations, \[{R_1} \to {R_1} - {R_2}\] and \[{R_2} \to {R_2} - {R_3}\] in the above determinant, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
0&{x - 1}&{{x^2} - x} \\
0&{1 - {x^2}}&{x - 1} \\
1&{{x^2}}&1
\end{array}} \right| = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
{x - 1}&{{x^2} - x} \\
{1 - {x^2}}&{x - 1}
\end{array}} \right| = 0 \\
\]
Finding the determinant of the above expression to simplify, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {\left( {x - 1} \right)\left( {x - 1} \right) - \left( {1 - {x^2}} \right)\left( {{x^2} - x} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {{{\left( {x - 1} \right)}^2} - x\left( {1 - {x^2}} \right)\left( {x - 1} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {\left( {x - 1} \right) - x\left( {1 - {x^2}} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {x - 1 - x + {x^3}} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
Using the property, \[{x^3} - 1 = \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\] in the above expression, we get
\[
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow {\left( {{x^3} - 1} \right)^2} = 0 \\
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
\[ \Rightarrow {x^3} - 1 = 0\] or \[{x^3} - 1 = 0\]
Taking the square root of the above equation, we get
\[ \Rightarrow {x^3} - 1 = 0\]
Adding the above equation by 1 on both sides, we get
\[
\Rightarrow {x^3} - 1 + 1 = 0 + 1 \\
\Rightarrow {x^3} = 1 \\
\]
Taking the cube root of the above equation on each side, we get
\[
\Rightarrow x = \sqrt[3]{1} \\
\Rightarrow x = 1 \\
\]
Thus, there is one pair of equal real roots.
Hence, option B is correct.
Note: In solving these types of questions, students can solve the given expression by simply solving the determinant. Here in this question the properties will only simplify the determinant, else it would be really hard for a student to solve it.
Complete step-by-step answer:
We are given that the determinant is \[\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = 0\].
Applying column transformation \[{C_1} \to {C_1} + {C_2} + {C_3}\] in the left hand side of above determinant, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&x&{{x^2}} \\
{{x^2} + 1 + x}&1&x \\
{x + {x^2} + 1}&{{x^2}}&1
\end{array}} \right| = 0\]
Taking the factor \[1 + x + {x^2}\] common out from above, we get
\[ \Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&1&x \\
1&{{x^2}}&1
\end{array}} \right| = 0\]
Now, applying row transformations, \[{R_1} \to {R_1} - {R_2}\] and \[{R_2} \to {R_2} - {R_3}\] in the above determinant, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
0&{x - 1}&{{x^2} - x} \\
0&{1 - {x^2}}&{x - 1} \\
1&{{x^2}}&1
\end{array}} \right| = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
{x - 1}&{{x^2} - x} \\
{1 - {x^2}}&{x - 1}
\end{array}} \right| = 0 \\
\]
Finding the determinant of the above expression to simplify, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {\left( {x - 1} \right)\left( {x - 1} \right) - \left( {1 - {x^2}} \right)\left( {{x^2} - x} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {{{\left( {x - 1} \right)}^2} - x\left( {1 - {x^2}} \right)\left( {x - 1} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {\left( {x - 1} \right) - x\left( {1 - {x^2}} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {x - 1 - x + {x^3}} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
Using the property, \[{x^3} - 1 = \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\] in the above expression, we get
\[
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow {\left( {{x^3} - 1} \right)^2} = 0 \\
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
\[ \Rightarrow {x^3} - 1 = 0\] or \[{x^3} - 1 = 0\]
Taking the square root of the above equation, we get
\[ \Rightarrow {x^3} - 1 = 0\]
Adding the above equation by 1 on both sides, we get
\[
\Rightarrow {x^3} - 1 + 1 = 0 + 1 \\
\Rightarrow {x^3} = 1 \\
\]
Taking the cube root of the above equation on each side, we get
\[
\Rightarrow x = \sqrt[3]{1} \\
\Rightarrow x = 1 \\
\]
Thus, there is one pair of equal real roots.
Hence, option B is correct.
Note: In solving these types of questions, students can solve the given expression by simply solving the determinant. Here in this question the properties will only simplify the determinant, else it would be really hard for a student to solve it.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

