
The equation \[\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = 0\] has
A.Exactly two distinct roots
B.One pair of equal real roots
C.Modulus of each root 1
D.Three pairs of equal roots
Answer
594.9k+ views
Hint: Here, we will apply the column transformation \[{C_1} \to {C_1} + {C_2} + {C_3}\] in the left hand side of given determinant and then after taking factor \[1 + x + {x^2}\] common out. Then we will apply row transformations, \[{R_1} \to {R_1} - {R_2}\] and \[{R_2} \to {R_2} - {R_3}\] in the obtained determinant and find the determinant to obtain the required equation.
Complete step-by-step answer:
We are given that the determinant is \[\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = 0\].
Applying column transformation \[{C_1} \to {C_1} + {C_2} + {C_3}\] in the left hand side of above determinant, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&x&{{x^2}} \\
{{x^2} + 1 + x}&1&x \\
{x + {x^2} + 1}&{{x^2}}&1
\end{array}} \right| = 0\]
Taking the factor \[1 + x + {x^2}\] common out from above, we get
\[ \Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&1&x \\
1&{{x^2}}&1
\end{array}} \right| = 0\]
Now, applying row transformations, \[{R_1} \to {R_1} - {R_2}\] and \[{R_2} \to {R_2} - {R_3}\] in the above determinant, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
0&{x - 1}&{{x^2} - x} \\
0&{1 - {x^2}}&{x - 1} \\
1&{{x^2}}&1
\end{array}} \right| = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
{x - 1}&{{x^2} - x} \\
{1 - {x^2}}&{x - 1}
\end{array}} \right| = 0 \\
\]
Finding the determinant of the above expression to simplify, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {\left( {x - 1} \right)\left( {x - 1} \right) - \left( {1 - {x^2}} \right)\left( {{x^2} - x} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {{{\left( {x - 1} \right)}^2} - x\left( {1 - {x^2}} \right)\left( {x - 1} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {\left( {x - 1} \right) - x\left( {1 - {x^2}} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {x - 1 - x + {x^3}} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
Using the property, \[{x^3} - 1 = \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\] in the above expression, we get
\[
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow {\left( {{x^3} - 1} \right)^2} = 0 \\
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
\[ \Rightarrow {x^3} - 1 = 0\] or \[{x^3} - 1 = 0\]
Taking the square root of the above equation, we get
\[ \Rightarrow {x^3} - 1 = 0\]
Adding the above equation by 1 on both sides, we get
\[
\Rightarrow {x^3} - 1 + 1 = 0 + 1 \\
\Rightarrow {x^3} = 1 \\
\]
Taking the cube root of the above equation on each side, we get
\[
\Rightarrow x = \sqrt[3]{1} \\
\Rightarrow x = 1 \\
\]
Thus, there is one pair of equal real roots.
Hence, option B is correct.
Note: In solving these types of questions, students can solve the given expression by simply solving the determinant. Here in this question the properties will only simplify the determinant, else it would be really hard for a student to solve it.
Complete step-by-step answer:
We are given that the determinant is \[\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
{{x^2}}&1&x \\
x&{{x^2}}&1
\end{array}} \right| = 0\].
Applying column transformation \[{C_1} \to {C_1} + {C_2} + {C_3}\] in the left hand side of above determinant, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{1 + x + {x^2}}&x&{{x^2}} \\
{{x^2} + 1 + x}&1&x \\
{x + {x^2} + 1}&{{x^2}}&1
\end{array}} \right| = 0\]
Taking the factor \[1 + x + {x^2}\] common out from above, we get
\[ \Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
1&x&{{x^2}} \\
1&1&x \\
1&{{x^2}}&1
\end{array}} \right| = 0\]
Now, applying row transformations, \[{R_1} \to {R_1} - {R_2}\] and \[{R_2} \to {R_2} - {R_3}\] in the above determinant, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
0&{x - 1}&{{x^2} - x} \\
0&{1 - {x^2}}&{x - 1} \\
1&{{x^2}}&1
\end{array}} \right| = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left| {\begin{array}{*{20}{c}}
{x - 1}&{{x^2} - x} \\
{1 - {x^2}}&{x - 1}
\end{array}} \right| = 0 \\
\]
Finding the determinant of the above expression to simplify, we get
\[
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {\left( {x - 1} \right)\left( {x - 1} \right) - \left( {1 - {x^2}} \right)\left( {{x^2} - x} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {{{\left( {x - 1} \right)}^2} - x\left( {1 - {x^2}} \right)\left( {x - 1} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {\left( {x - 1} \right) - x\left( {1 - {x^2}} \right)} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {x - 1 - x + {x^3}} \right) = 0 \\
\Rightarrow \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
Using the property, \[{x^3} - 1 = \left( {1 + x + {x^2}} \right)\left( {x - 1} \right)\] in the above expression, we get
\[
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\Rightarrow {\left( {{x^3} - 1} \right)^2} = 0 \\
\Rightarrow \left( {{x^3} - 1} \right)\left( {{x^3} - 1} \right) = 0 \\
\]
\[ \Rightarrow {x^3} - 1 = 0\] or \[{x^3} - 1 = 0\]
Taking the square root of the above equation, we get
\[ \Rightarrow {x^3} - 1 = 0\]
Adding the above equation by 1 on both sides, we get
\[
\Rightarrow {x^3} - 1 + 1 = 0 + 1 \\
\Rightarrow {x^3} = 1 \\
\]
Taking the cube root of the above equation on each side, we get
\[
\Rightarrow x = \sqrt[3]{1} \\
\Rightarrow x = 1 \\
\]
Thus, there is one pair of equal real roots.
Hence, option B is correct.
Note: In solving these types of questions, students can solve the given expression by simply solving the determinant. Here in this question the properties will only simplify the determinant, else it would be really hard for a student to solve it.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

