
The equation \[2{\log _2}({\log _2}x) + {\log _{1/2}}{\log _2}(2\sqrt {2x} ) = 1\] has
A. product of all its solution =4
B. a rational solution which is not an integer
C. has a natural solution
D. has no prime solutions
Answer
582.3k+ views
Here, we would be using the basic properties of logarithmic function. Then find the value of x from the quadratic equation.
Complete step-by-step answer:
Given, \[2{\log _2}({\log _2}x) + {\log _{1/2}}{\log _2}(2\sqrt {2x} ) = 1\]
(using the property which is given by \[a\log b = \log {b^a}\]and \[\log _a^b = \dfrac{{\log b}}{{\log a}}\])
\[ \Rightarrow {\log _2}{({\log _2}x)^2} + \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 1/2}} = 1\]
\[ \Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2}}}{{\log 2}} + \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 1/2}} = 1\]
\[ \Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2}}}{{\log 2}} - \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 2}} = 1\](using the property which is given by \[\log \dfrac{a}{b} = - \log \dfrac{b}{a}\])
\[ \Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2} - \log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 2}} = 1\]
\[ \Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}(2\sqrt {2x} )}}} \right) = \log 2\] (using the property which is given by \[\log a - \log b = \log \dfrac{a}{b}\])
\[ \Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}({2^{3/2}}x)}}} \right) = \log 2\]
\[ \Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}({2^{3/2}}) + {{\log }_2}x}}} \right) = \log 2\] (using the property which is given by \[\log a + \log b = \log ab\])
\[ \Rightarrow \log {({\log _2}x)^2} = \log 2\left( {\dfrac{3}{2} + {{\log }_2}x} \right)\](using the property which is given by\[{\log _a}{a^n} = n\])
\[
\Rightarrow {({\log _2}x)^2} = 2\left( {\dfrac{3}{2} + {{\log }_2}x} \right) \\
\Rightarrow {({\log _2}x)^2} = 3 + 2{\log _2}x \\
\Rightarrow {({\log _2}x)^2} - 2{\log _2}x - 3 = 0 \\
\Rightarrow {({\log _2}x)^2} - 3{\log _2}x + {\log _2}x - 3 = 0 \\
\Rightarrow {\log _2}x({\log _2}x - 3) + 1({\log _2}x - 3) = 0 \\
\Rightarrow ({\log _2}x + 1)({\log _2}x - 3) = 0 \\
\Rightarrow x = \dfrac{1}{2},x = {2^3} = 8 \\
\]
Now if we take the product of \[x = \dfrac{1}{2}\]and \[x = 8\]then we get 4
Therefore, option A. product of all its solution =4 is the required solution
Note: (i) The properties of logarithmic function should be used carefully.
(ii) One should avoid common mistakes such as \[r{\log _a}M \ne {({\log _a}M)^r}\]
Complete step-by-step answer:
Given, \[2{\log _2}({\log _2}x) + {\log _{1/2}}{\log _2}(2\sqrt {2x} ) = 1\]
(using the property which is given by \[a\log b = \log {b^a}\]and \[\log _a^b = \dfrac{{\log b}}{{\log a}}\])
\[ \Rightarrow {\log _2}{({\log _2}x)^2} + \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 1/2}} = 1\]
\[ \Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2}}}{{\log 2}} + \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 1/2}} = 1\]
\[ \Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2}}}{{\log 2}} - \dfrac{{\log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 2}} = 1\](using the property which is given by \[\log \dfrac{a}{b} = - \log \dfrac{b}{a}\])
\[ \Rightarrow \dfrac{{\log {{({{\log }_2}x)}^2} - \log \left( {{{\log }_2}(2\sqrt {2x} )} \right)}}{{\log 2}} = 1\]
\[ \Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}(2\sqrt {2x} )}}} \right) = \log 2\] (using the property which is given by \[\log a - \log b = \log \dfrac{a}{b}\])
\[ \Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}({2^{3/2}}x)}}} \right) = \log 2\]
\[ \Rightarrow \log \left( {\dfrac{{{{({{\log }_2}x)}^2}}}{{{{\log }_2}({2^{3/2}}) + {{\log }_2}x}}} \right) = \log 2\] (using the property which is given by \[\log a + \log b = \log ab\])
\[ \Rightarrow \log {({\log _2}x)^2} = \log 2\left( {\dfrac{3}{2} + {{\log }_2}x} \right)\](using the property which is given by\[{\log _a}{a^n} = n\])
\[
\Rightarrow {({\log _2}x)^2} = 2\left( {\dfrac{3}{2} + {{\log }_2}x} \right) \\
\Rightarrow {({\log _2}x)^2} = 3 + 2{\log _2}x \\
\Rightarrow {({\log _2}x)^2} - 2{\log _2}x - 3 = 0 \\
\Rightarrow {({\log _2}x)^2} - 3{\log _2}x + {\log _2}x - 3 = 0 \\
\Rightarrow {\log _2}x({\log _2}x - 3) + 1({\log _2}x - 3) = 0 \\
\Rightarrow ({\log _2}x + 1)({\log _2}x - 3) = 0 \\
\Rightarrow x = \dfrac{1}{2},x = {2^3} = 8 \\
\]
Now if we take the product of \[x = \dfrac{1}{2}\]and \[x = 8\]then we get 4
Therefore, option A. product of all its solution =4 is the required solution
Note: (i) The properties of logarithmic function should be used carefully.
(ii) One should avoid common mistakes such as \[r{\log _a}M \ne {({\log _a}M)^r}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

