
The enthalpy of a reaction at $ 273K $ is $ - 3.57kJ $ . What will be the enthalpy of a reaction at $ 373K $ if $ \Delta {C_p} = zero? $
(A) $ - 3.57 $
(B) Zero
(C) $ - 3.57 \times \dfrac{{373}}{{273}} $
(D) $ - 375 $
Answer
490.5k+ views
Hint: The enthalpy of a reaction can be given by the difference between the enthalpy of the products and enthalpy of reactants. Thus, enthalpy of other reaction at a different temperature can be calculated from Kirchhoff’s law. The specific heat at constant pressure and the temperatures were needed to calculate the enthalpy of a reaction.
$ \Delta {C_p} = \dfrac{{\Delta {H_2} - \Delta {H_1}}}{{{T_2} - {T_1}}} $
$ \Delta {C_p} $ is specific heat at constant pressure
$ \Delta {H_2} $ is final enthalpy having to be determined
$ \Delta {H_1} $ is initial enthalpy
$ {T_2} $ is final temperature
$ {T_1} $ is the initial temperature.
Complete answer:
Given that a chemical reaction at $ 273K $ has the enthalpy $ - 3.57kJ $ .
The specific heat at constant pressure is zero
The enthalpy at $ 373K $ has to be determined
Kirchhoff’s law is the law that gives the relation between the enthalpy or heat of a reaction, temperature and specific heat at constant pressure. Generally, enthalpy increases with increase in temperature. But in this case the specific heat at constant pressure given is zero.
In the above Kirchhoff’s law, substitute all the values in that equation
$ 0 = \dfrac{{\Delta {H_2} + 3.57}}{{373 - 273}} $
By simplification, we will get
$ \Delta {H_2} = - 3.57 $
Thus, the enthalpy of a reaction at $ 373K $ is $ - 3.57 $ .
Thus, option A is the correct one.
Note:
Generally, according to Kirchhoff’s law, the enthalpy of a reaction increases with the increase in temperature. But the specific heat capacity at constant pressure is zero in the given reaction. The enthalpy is constant at the two given temperatures.
$ \Delta {C_p} = \dfrac{{\Delta {H_2} - \Delta {H_1}}}{{{T_2} - {T_1}}} $
$ \Delta {C_p} $ is specific heat at constant pressure
$ \Delta {H_2} $ is final enthalpy having to be determined
$ \Delta {H_1} $ is initial enthalpy
$ {T_2} $ is final temperature
$ {T_1} $ is the initial temperature.
Complete answer:
Given that a chemical reaction at $ 273K $ has the enthalpy $ - 3.57kJ $ .
The specific heat at constant pressure is zero
The enthalpy at $ 373K $ has to be determined
Kirchhoff’s law is the law that gives the relation between the enthalpy or heat of a reaction, temperature and specific heat at constant pressure. Generally, enthalpy increases with increase in temperature. But in this case the specific heat at constant pressure given is zero.
In the above Kirchhoff’s law, substitute all the values in that equation
$ 0 = \dfrac{{\Delta {H_2} + 3.57}}{{373 - 273}} $
By simplification, we will get
$ \Delta {H_2} = - 3.57 $
Thus, the enthalpy of a reaction at $ 373K $ is $ - 3.57 $ .
Thus, option A is the correct one.
Note:
Generally, according to Kirchhoff’s law, the enthalpy of a reaction increases with the increase in temperature. But the specific heat capacity at constant pressure is zero in the given reaction. The enthalpy is constant at the two given temperatures.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

