
The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a},\hat{b},\hat{c}$ such that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$ then the volume of the parallelepiped is,
(a) $\dfrac{1}{\sqrt{2}}$
(b) $\dfrac{1}{2\sqrt{2}}$
(c) $\dfrac{\sqrt{3}}{2}$
(d) $\dfrac{1}{\sqrt{3}}$
Answer
527.7k+ views
Hint: As we know that the volume of parallelepiped is $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$ so we will use the formula \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]. This is because it is the only way to get the required value of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will also use $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$, $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$ values to solve it further. Finally, we will take the help of the formula $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$.
Complete step-by-step solution:
We will use a clear cut formula to get the right volume of parallelepiped. The formula that we used here is given by $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will use \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]…(i). Since, we are given that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$ so, by substituting these values to (i) we get
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|$
At this point we can use the fact that $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ so we can write
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & 1 \\
\end{matrix} \right|$
As we are already informed that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$therefore, we can write $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$. Thus, the above gets converted into the following,
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right|$
To solve it further we are going to apply the formula, $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$ therefore, we get
\[\begin{align}
& {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right| \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1\cdot 1-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)-\dfrac{1}{2}\left( 1\cdot \dfrac{1}{2}-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}-1\cdot \dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1-\dfrac{1}{4} \right)-\dfrac{1}{2}\left( \dfrac{1}{2}-\dfrac{1}{4} \right)+\dfrac{1}{2}\left( \dfrac{1}{4}-\dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{2}\cdot \dfrac{1}{4}+\dfrac{1}{2}\left( -\dfrac{1}{4} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{8}-\dfrac{1}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{2}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{4}{8}=\dfrac{1}{2} \\
\end{align}\]
By taking square root on both the sides we get the following,
\[\sqrt{{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}}=\sqrt{\dfrac{1}{2}}=\dfrac{1}{\sqrt{2}}\]
Therefore, the required volume of parallelepiped is $\dfrac{1}{\sqrt{2}}$.
Hence, the correct option is (a).
Note: In this question it should be noted that we have used \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}\] for representing the volume of parallelepiped. But we can also use here $\hat{a}\cdot \left( \hat{b}\cdot \hat{c} \right)$ instead of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We have used $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ in this question due to the fact that the edges of the given parallelopiped are of 1 unit in length. One should not forget about taking the square root of ${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}$ otherwise, the solution will remain unfinished and we eventually get to the wrong answer. Solving such questions with focus can lead to the correct option.
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]. This is because it is the only way to get the required value of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will also use $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$, $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$ values to solve it further. Finally, we will take the help of the formula $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$.
Complete step-by-step solution:
We will use a clear cut formula to get the right volume of parallelepiped. The formula that we used here is given by $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will use \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]…(i). Since, we are given that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$ so, by substituting these values to (i) we get
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|$
At this point we can use the fact that $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ so we can write
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & 1 \\
\end{matrix} \right|$
As we are already informed that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$therefore, we can write $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$. Thus, the above gets converted into the following,
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right|$
To solve it further we are going to apply the formula, $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$ therefore, we get
\[\begin{align}
& {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right| \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1\cdot 1-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)-\dfrac{1}{2}\left( 1\cdot \dfrac{1}{2}-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}-1\cdot \dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1-\dfrac{1}{4} \right)-\dfrac{1}{2}\left( \dfrac{1}{2}-\dfrac{1}{4} \right)+\dfrac{1}{2}\left( \dfrac{1}{4}-\dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{2}\cdot \dfrac{1}{4}+\dfrac{1}{2}\left( -\dfrac{1}{4} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{8}-\dfrac{1}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{2}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{4}{8}=\dfrac{1}{2} \\
\end{align}\]
By taking square root on both the sides we get the following,
\[\sqrt{{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}}=\sqrt{\dfrac{1}{2}}=\dfrac{1}{\sqrt{2}}\]
Therefore, the required volume of parallelepiped is $\dfrac{1}{\sqrt{2}}$.
Hence, the correct option is (a).
Note: In this question it should be noted that we have used \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}\] for representing the volume of parallelepiped. But we can also use here $\hat{a}\cdot \left( \hat{b}\cdot \hat{c} \right)$ instead of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We have used $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ in this question due to the fact that the edges of the given parallelopiped are of 1 unit in length. One should not forget about taking the square root of ${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}$ otherwise, the solution will remain unfinished and we eventually get to the wrong answer. Solving such questions with focus can lead to the correct option.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

