
The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a},\hat{b},\hat{c}$ such that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$ then the volume of the parallelepiped is,
(a) $\dfrac{1}{\sqrt{2}}$
(b) $\dfrac{1}{2\sqrt{2}}$
(c) $\dfrac{\sqrt{3}}{2}$
(d) $\dfrac{1}{\sqrt{3}}$
Answer
446.1k+ views
Hint: As we know that the volume of parallelepiped is $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$ so we will use the formula \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]. This is because it is the only way to get the required value of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will also use $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$, $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$ values to solve it further. Finally, we will take the help of the formula $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$.
Complete step-by-step solution:
We will use a clear cut formula to get the right volume of parallelepiped. The formula that we used here is given by $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will use \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]…(i). Since, we are given that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$ so, by substituting these values to (i) we get
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|$
At this point we can use the fact that $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ so we can write
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & 1 \\
\end{matrix} \right|$
As we are already informed that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$therefore, we can write $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$. Thus, the above gets converted into the following,
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right|$
To solve it further we are going to apply the formula, $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$ therefore, we get
\[\begin{align}
& {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right| \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1\cdot 1-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)-\dfrac{1}{2}\left( 1\cdot \dfrac{1}{2}-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}-1\cdot \dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1-\dfrac{1}{4} \right)-\dfrac{1}{2}\left( \dfrac{1}{2}-\dfrac{1}{4} \right)+\dfrac{1}{2}\left( \dfrac{1}{4}-\dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{2}\cdot \dfrac{1}{4}+\dfrac{1}{2}\left( -\dfrac{1}{4} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{8}-\dfrac{1}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{2}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{4}{8}=\dfrac{1}{2} \\
\end{align}\]
By taking square root on both the sides we get the following,
\[\sqrt{{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}}=\sqrt{\dfrac{1}{2}}=\dfrac{1}{\sqrt{2}}\]
Therefore, the required volume of parallelepiped is $\dfrac{1}{\sqrt{2}}$.
Hence, the correct option is (a).
Note: In this question it should be noted that we have used \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}\] for representing the volume of parallelepiped. But we can also use here $\hat{a}\cdot \left( \hat{b}\cdot \hat{c} \right)$ instead of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We have used $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ in this question due to the fact that the edges of the given parallelopiped are of 1 unit in length. One should not forget about taking the square root of ${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}$ otherwise, the solution will remain unfinished and we eventually get to the wrong answer. Solving such questions with focus can lead to the correct option.
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]. This is because it is the only way to get the required value of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will also use $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$, $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$ values to solve it further. Finally, we will take the help of the formula $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$.
Complete step-by-step solution:
We will use a clear cut formula to get the right volume of parallelepiped. The formula that we used here is given by $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We will use \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \hat{a}\cdot \hat{b} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \hat{b}\cdot \hat{c} \\
\hat{c}\cdot \hat{a} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|\]…(i). Since, we are given that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$ so, by substituting these values to (i) we get
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
\hat{a}\cdot \hat{a} & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & \hat{b}\cdot \hat{b} & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & \hat{c}\cdot \hat{c} \\
\end{matrix} \right|$
At this point we can use the fact that $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ so we can write
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \hat{a}\cdot \hat{c} \\
\hat{b}\cdot \hat{a} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \hat{c}\cdot \hat{b} & 1 \\
\end{matrix} \right|$
As we are already informed that $\hat{a}\cdot \hat{b}=\hat{b}\cdot \hat{c}=\hat{c}\cdot \hat{a}=\dfrac{1}{2}$therefore, we can write $\hat{b}\cdot \hat{a}=\hat{c}\cdot \hat{b}=\hat{a}\cdot \hat{c}=\dfrac{1}{2}$. Thus, the above gets converted into the following,
${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right|$
To solve it further we are going to apply the formula, $\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
a & b & c \\
d & e & f \\
\end{matrix} \right|=\hat{i}\left( bf-ce \right)-\hat{j}\left( af-dc \right)+\hat{k}\left( ae-bd \right)$ therefore, we get
\[\begin{align}
& {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\left| \begin{matrix}
1 & \dfrac{1}{2} & \dfrac{1}{2} \\
\dfrac{1}{2} & 1 & \dfrac{1}{2} \\
\dfrac{1}{2} & \dfrac{1}{2} & 1 \\
\end{matrix} \right| \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1\cdot 1-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)-\dfrac{1}{2}\left( 1\cdot \dfrac{1}{2}-\dfrac{1}{2}\cdot \dfrac{1}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\cdot \dfrac{1}{2}-1\cdot \dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=1\left( 1-\dfrac{1}{4} \right)-\dfrac{1}{2}\left( \dfrac{1}{2}-\dfrac{1}{4} \right)+\dfrac{1}{2}\left( \dfrac{1}{4}-\dfrac{1}{2} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{2}\cdot \dfrac{1}{4}+\dfrac{1}{2}\left( -\dfrac{1}{4} \right) \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{1}{8}-\dfrac{1}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{3}{4}-\dfrac{2}{8} \\
& \Rightarrow {{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}=\dfrac{4}{8}=\dfrac{1}{2} \\
\end{align}\]
By taking square root on both the sides we get the following,
\[\sqrt{{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}}=\sqrt{\dfrac{1}{2}}=\dfrac{1}{\sqrt{2}}\]
Therefore, the required volume of parallelepiped is $\dfrac{1}{\sqrt{2}}$.
Hence, the correct option is (a).
Note: In this question it should be noted that we have used \[{{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}\] for representing the volume of parallelepiped. But we can also use here $\hat{a}\cdot \left( \hat{b}\cdot \hat{c} \right)$ instead of $\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]$. We have used $\hat{a}\cdot \hat{a}=\hat{b}\cdot \hat{b}=\hat{c}\cdot \hat{c}=1$ in this question due to the fact that the edges of the given parallelopiped are of 1 unit in length. One should not forget about taking the square root of ${{\left[ \hat{a}\,\,\hat{b}\,\,\hat{c} \right]}^{2}}$ otherwise, the solution will remain unfinished and we eventually get to the wrong answer. Solving such questions with focus can lead to the correct option.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
