
The double bond equivalent for tetrahedron
(A) 2
(B) 3
(C) 4
(D) 5
Answer
569.4k+ views
Hint: The number of unsaturation present in the molecule is known as DBE or double bond equivalent. In a ring system or double bond referrers the term unsaturation. For example, benzene has 3 double bonds and 1 ring which gives double bond equivalent value 4. If an organic compound has the presence of an oxygen atom does not influence the double bond equivalent calculation.
Complete step by step solution:
A double bond equivalent for an organic compound can be calculated by the given formula.
$DBE=C+1-\dfrac{H}{2}-\dfrac{X}{2}+\dfrac{N}{2}$ --- (1)
DBE = double bond equivalent of unsaturation
C = number of carbon atoms present in the organic compound
H = number of hydrogen atoms present in the given organic compound
X = number of halogens atoms present like Cl, Br, or I
N = number of nitrogen atoms present in the given organic compound.
Given organic compound – tetrahedrane and chemical formula is ${{C}_{4}}{{H}_{4}}$
The number of carbons present in the given organic compound = 4
Then the number of hydrogen atoms present in the given organic compound = 4
There is no number of nitrogen and halogen atoms.
From equation (1),
$DBE=4+1-\dfrac{4}{2}-\dfrac{0}{2}+\dfrac{0}{2}$= 3
Hence, the double bond equivalent for tetrahedron is 3.
So, the correct answer is option B.
Note: The arrangement of atoms and the chemical bonds that hold the atoms together in the chemical structure of this tetrahedrane contains a total of 10 bonds. There are 4 three-membered rings, 3 four-membered rings, and 6 non-H bonds.
Complete step by step solution:
A double bond equivalent for an organic compound can be calculated by the given formula.
$DBE=C+1-\dfrac{H}{2}-\dfrac{X}{2}+\dfrac{N}{2}$ --- (1)
DBE = double bond equivalent of unsaturation
C = number of carbon atoms present in the organic compound
H = number of hydrogen atoms present in the given organic compound
X = number of halogens atoms present like Cl, Br, or I
N = number of nitrogen atoms present in the given organic compound.
Given organic compound – tetrahedrane and chemical formula is ${{C}_{4}}{{H}_{4}}$
The number of carbons present in the given organic compound = 4
Then the number of hydrogen atoms present in the given organic compound = 4
There is no number of nitrogen and halogen atoms.
From equation (1),
$DBE=4+1-\dfrac{4}{2}-\dfrac{0}{2}+\dfrac{0}{2}$= 3
Hence, the double bond equivalent for tetrahedron is 3.
So, the correct answer is option B.
Note: The arrangement of atoms and the chemical bonds that hold the atoms together in the chemical structure of this tetrahedrane contains a total of 10 bonds. There are 4 three-membered rings, 3 four-membered rings, and 6 non-H bonds.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

