
The distance of the point (3, 5) from the line \[2x + 3y - 14 = 0\] measured parallel to $x - 2y = 1$.
$
\left( a \right)\dfrac{7}{{\sqrt 5 }} \\
\left( b \right)\dfrac{7}{{\sqrt {13} }} \\
\left( c \right)\sqrt 5 \\
\left( d \right)\sqrt {13} \\
$
Answer
606.3k+ views
Hint: In this question, we use the parametric equation of straight line. Parametric form of the equation of a straight line: $\dfrac{{x - {x_1}}}{{\cos \theta }} = \dfrac{{y - {y_1}}}{{\sin \theta }} = r$ , where r is the distance between two points and $\theta $ is angle made by straight line with positive x-axis.
Complete step-by-step answer:
First we find slope of line passing through the point (3, 5) and parallel to $x - 2y = 1$
We know all parallel lines have the same slope so the slope of the line is $\dfrac{1}{2}$ .
Now, we can write as $\tan \theta = \dfrac{1}{2}$ .
We can find value of $\cos \theta $ and $\sin \theta $
$ \Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }},\sin \theta = \dfrac{1}{{\sqrt 5 }}$
Let r be the required distance. Then the equation of line passing through (3,5) and parallel to $x - 2y = 1$.
Using a parametric equation of straight line .
$
\dfrac{{x - {x_1}}}{{\cos \theta }} = \dfrac{{y - {y_1}}}{{\sin \theta }} = r \\
\Rightarrow \dfrac{{x - 3}}{{\cos \theta }} = \dfrac{{y - 5}}{{\sin \theta }} = r \\
\Rightarrow x = 3 + r\cos \theta ,y = 5 + r\sin \theta \\
$
Since this point lies on the line 2x+3y−14=0 and also satisfies this line.
$ \Rightarrow 2\left( {3 + r\cos \theta } \right) + 3\left( {5 + r\sin \theta } \right) - 14 = 0$
Put the value of $\cos \theta $ and $\sin \theta $ .
$
\Rightarrow 2\left( {3 + \dfrac{{2r}}{{\sqrt 5 }}} \right) + 3\left( {5 + \dfrac{r}{{\sqrt 5 }}} \right) - 14 = 0 \\
\Rightarrow 6 + \dfrac{{4r}}{{\sqrt 5 }} + 15 + \dfrac{{3r}}{{\sqrt 5 }} - 14 = 0 \\
\Rightarrow 7 + \dfrac{{7r}}{{\sqrt 5 }} = 0 \\
\Rightarrow r = - \sqrt 5 \\
$
Required distance is $\sqrt 5 $ and negative signs represent only direction.
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. Like we find an equation of line passing through a point and parallel to other lines by using a parametric form of straight line then after use given line we can get the required answer.
Complete step-by-step answer:
First we find slope of line passing through the point (3, 5) and parallel to $x - 2y = 1$
We know all parallel lines have the same slope so the slope of the line is $\dfrac{1}{2}$ .
Now, we can write as $\tan \theta = \dfrac{1}{2}$ .
We can find value of $\cos \theta $ and $\sin \theta $
$ \Rightarrow \cos \theta = \dfrac{2}{{\sqrt 5 }},\sin \theta = \dfrac{1}{{\sqrt 5 }}$
Let r be the required distance. Then the equation of line passing through (3,5) and parallel to $x - 2y = 1$.
Using a parametric equation of straight line .
$
\dfrac{{x - {x_1}}}{{\cos \theta }} = \dfrac{{y - {y_1}}}{{\sin \theta }} = r \\
\Rightarrow \dfrac{{x - 3}}{{\cos \theta }} = \dfrac{{y - 5}}{{\sin \theta }} = r \\
\Rightarrow x = 3 + r\cos \theta ,y = 5 + r\sin \theta \\
$
Since this point lies on the line 2x+3y−14=0 and also satisfies this line.
$ \Rightarrow 2\left( {3 + r\cos \theta } \right) + 3\left( {5 + r\sin \theta } \right) - 14 = 0$
Put the value of $\cos \theta $ and $\sin \theta $ .
$
\Rightarrow 2\left( {3 + \dfrac{{2r}}{{\sqrt 5 }}} \right) + 3\left( {5 + \dfrac{r}{{\sqrt 5 }}} \right) - 14 = 0 \\
\Rightarrow 6 + \dfrac{{4r}}{{\sqrt 5 }} + 15 + \dfrac{{3r}}{{\sqrt 5 }} - 14 = 0 \\
\Rightarrow 7 + \dfrac{{7r}}{{\sqrt 5 }} = 0 \\
\Rightarrow r = - \sqrt 5 \\
$
Required distance is $\sqrt 5 $ and negative signs represent only direction.
So, the correct option is (c).
Note: Whenever we face such types of problems we use some important points. Like we find an equation of line passing through a point and parallel to other lines by using a parametric form of straight line then after use given line we can get the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

