
The distance between the points $\left( {a\cos \alpha ,a\sin \alpha } \right)$ and $\left( {a\cos \beta ,a\sin \beta } \right)$ is
a. $a\cos \dfrac{{\alpha - \beta }}{2}$
b. $2a\cos \dfrac{{\alpha - \beta }}{2}$
c. $2a\sin \dfrac{{\alpha - \beta }}{2}$
d. $a\sin \dfrac{{\alpha - \beta }}{2}$
Answer
573.6k+ views
Hint: We will first calculate the distance between two points using the distance formula $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $, where $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ are the coordinates of the points and $d$ is the distance between these two points. Further, simplify the expression using the trigonometric identities to get the required answer.
Complete step-by-step answer:
We are given the coordinates of two points, $\left( {a\cos \alpha ,a\sin \alpha } \right)$ and $\left( {a\cos \beta ,a\sin \beta } \right)$
As, it is known that if the coordinates of the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, then the distance between two points is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
On substituting the values, we will get,
$d = \sqrt {{{\left( {a\cos \beta - a\cos \alpha } \right)}^2} + {{\left( {a\sin \beta - a\sin \alpha } \right)}^2}} $
Simplify the brackets using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$d = \sqrt {{a^2}{{\cos }^2}\alpha + {a^2}{{\cos }^2}\beta - 2{a^2}\cos \alpha \cos \beta + {a^2}{{\sin }^2}\beta + {a^2}\sin \alpha - 2{a^2}\sin \alpha \sin \beta } $
Take ${a^2}$ and use the identity ${\sin ^2}x + {\cos ^2}x = 1$ to further simplify it
$
d = \sqrt {{a^2}\left( {{{\cos }^2}\alpha + {{\cos }^2}\beta - 2\cos \alpha \cos \beta + {{\sin }^2}\beta + {{\sin }^2}\alpha - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {1 + 1 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {2 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)} \\
$
Now, we will take minus sign common and use the formula $\cos a\cos b + \sin a\sin b = \cos \left( {a - b} \right)$ to simplify the expression.
$
d = \sqrt {2{a^2}\left( {1 - \left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
$
Also, $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
Therefore, we have,
$
d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {2{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \right)} \\
\Rightarrow d = \sqrt {4{a^2}{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \\
$
Now, solving the square root of the above equation, we will get,
\[ \Rightarrow d = 2a\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
Hence, option C is correct.
Note: Students should learn trigonometric identities and formulas to do these types of questions. Also, do not forget to simplify the equation by taking out common terms and then using trigonometric identities. The concept used in this question is simple but students often make mistakes in simplification of the distance calculated.
Complete step-by-step answer:
We are given the coordinates of two points, $\left( {a\cos \alpha ,a\sin \alpha } \right)$ and $\left( {a\cos \beta ,a\sin \beta } \right)$
As, it is known that if the coordinates of the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, then the distance between two points is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
On substituting the values, we will get,
$d = \sqrt {{{\left( {a\cos \beta - a\cos \alpha } \right)}^2} + {{\left( {a\sin \beta - a\sin \alpha } \right)}^2}} $
Simplify the brackets using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$d = \sqrt {{a^2}{{\cos }^2}\alpha + {a^2}{{\cos }^2}\beta - 2{a^2}\cos \alpha \cos \beta + {a^2}{{\sin }^2}\beta + {a^2}\sin \alpha - 2{a^2}\sin \alpha \sin \beta } $
Take ${a^2}$ and use the identity ${\sin ^2}x + {\cos ^2}x = 1$ to further simplify it
$
d = \sqrt {{a^2}\left( {{{\cos }^2}\alpha + {{\cos }^2}\beta - 2\cos \alpha \cos \beta + {{\sin }^2}\beta + {{\sin }^2}\alpha - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {1 + 1 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {2 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)} \\
$
Now, we will take minus sign common and use the formula $\cos a\cos b + \sin a\sin b = \cos \left( {a - b} \right)$ to simplify the expression.
$
d = \sqrt {2{a^2}\left( {1 - \left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
$
Also, $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
Therefore, we have,
$
d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {2{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \right)} \\
\Rightarrow d = \sqrt {4{a^2}{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \\
$
Now, solving the square root of the above equation, we will get,
\[ \Rightarrow d = 2a\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
Hence, option C is correct.
Note: Students should learn trigonometric identities and formulas to do these types of questions. Also, do not forget to simplify the equation by taking out common terms and then using trigonometric identities. The concept used in this question is simple but students often make mistakes in simplification of the distance calculated.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

