
The distance between the points $\left( {a\cos \alpha ,a\sin \alpha } \right)$ and $\left( {a\cos \beta ,a\sin \beta } \right)$ is
a. $a\cos \dfrac{{\alpha - \beta }}{2}$
b. $2a\cos \dfrac{{\alpha - \beta }}{2}$
c. $2a\sin \dfrac{{\alpha - \beta }}{2}$
d. $a\sin \dfrac{{\alpha - \beta }}{2}$
Answer
558k+ views
Hint: We will first calculate the distance between two points using the distance formula $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $, where $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ are the coordinates of the points and $d$ is the distance between these two points. Further, simplify the expression using the trigonometric identities to get the required answer.
Complete step-by-step answer:
We are given the coordinates of two points, $\left( {a\cos \alpha ,a\sin \alpha } \right)$ and $\left( {a\cos \beta ,a\sin \beta } \right)$
As, it is known that if the coordinates of the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, then the distance between two points is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
On substituting the values, we will get,
$d = \sqrt {{{\left( {a\cos \beta - a\cos \alpha } \right)}^2} + {{\left( {a\sin \beta - a\sin \alpha } \right)}^2}} $
Simplify the brackets using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$d = \sqrt {{a^2}{{\cos }^2}\alpha + {a^2}{{\cos }^2}\beta - 2{a^2}\cos \alpha \cos \beta + {a^2}{{\sin }^2}\beta + {a^2}\sin \alpha - 2{a^2}\sin \alpha \sin \beta } $
Take ${a^2}$ and use the identity ${\sin ^2}x + {\cos ^2}x = 1$ to further simplify it
$
d = \sqrt {{a^2}\left( {{{\cos }^2}\alpha + {{\cos }^2}\beta - 2\cos \alpha \cos \beta + {{\sin }^2}\beta + {{\sin }^2}\alpha - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {1 + 1 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {2 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)} \\
$
Now, we will take minus sign common and use the formula $\cos a\cos b + \sin a\sin b = \cos \left( {a - b} \right)$ to simplify the expression.
$
d = \sqrt {2{a^2}\left( {1 - \left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
$
Also, $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
Therefore, we have,
$
d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {2{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \right)} \\
\Rightarrow d = \sqrt {4{a^2}{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \\
$
Now, solving the square root of the above equation, we will get,
\[ \Rightarrow d = 2a\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
Hence, option C is correct.
Note: Students should learn trigonometric identities and formulas to do these types of questions. Also, do not forget to simplify the equation by taking out common terms and then using trigonometric identities. The concept used in this question is simple but students often make mistakes in simplification of the distance calculated.
Complete step-by-step answer:
We are given the coordinates of two points, $\left( {a\cos \alpha ,a\sin \alpha } \right)$ and $\left( {a\cos \beta ,a\sin \beta } \right)$
As, it is known that if the coordinates of the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$, then the distance between two points is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
On substituting the values, we will get,
$d = \sqrt {{{\left( {a\cos \beta - a\cos \alpha } \right)}^2} + {{\left( {a\sin \beta - a\sin \alpha } \right)}^2}} $
Simplify the brackets using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$d = \sqrt {{a^2}{{\cos }^2}\alpha + {a^2}{{\cos }^2}\beta - 2{a^2}\cos \alpha \cos \beta + {a^2}{{\sin }^2}\beta + {a^2}\sin \alpha - 2{a^2}\sin \alpha \sin \beta } $
Take ${a^2}$ and use the identity ${\sin ^2}x + {\cos ^2}x = 1$ to further simplify it
$
d = \sqrt {{a^2}\left( {{{\cos }^2}\alpha + {{\cos }^2}\beta - 2\cos \alpha \cos \beta + {{\sin }^2}\beta + {{\sin }^2}\alpha - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {1 + 1 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {{a^2}\left( {2 - 2\cos \alpha \cos \beta - 2\sin \alpha \sin \beta } \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \alpha \cos \beta - \sin \alpha \sin \beta } \right)} \\
$
Now, we will take minus sign common and use the formula $\cos a\cos b + \sin a\sin b = \cos \left( {a - b} \right)$ to simplify the expression.
$
d = \sqrt {2{a^2}\left( {1 - \left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
$
Also, $1 - \cos x = 2{\sin ^2}\dfrac{x}{2}$
Therefore, we have,
$
d = \sqrt {2{a^2}\left( {1 - \cos \left( {\alpha - \beta } \right)} \right)} \\
\Rightarrow d = \sqrt {2{a^2}\left( {2{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \right)} \\
\Rightarrow d = \sqrt {4{a^2}{{\sin }^2}\left( {\dfrac{{\alpha - \beta }}{2}} \right)} \\
$
Now, solving the square root of the above equation, we will get,
\[ \Rightarrow d = 2a\sin \left( {\dfrac{{\alpha - \beta }}{2}} \right)\]
Hence, option C is correct.
Note: Students should learn trigonometric identities and formulas to do these types of questions. Also, do not forget to simplify the equation by taking out common terms and then using trigonometric identities. The concept used in this question is simple but students often make mistakes in simplification of the distance calculated.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

