
The distance between the foci of the hyperbola is
A.4
B.6
C.8
D.10
Answer
486.9k+ views
Hint: A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distance between two fixed points on a plane stays constant. The two points are called the foci of the hyperbola. Also remember that the eccentricity of a hyperbola is greater than 1. Eccentricity is denoted by . In hyperbola Where ‘a’ and ‘b’ are the lengths of semi major and semi minor axes in a hyperbola respectively.
Complete step-by-step answer:
Now given a polynomial,
Separating x and y variable separately, shifting constant on right hand side we get,
Adding 4 on both side and subtract -3 on both side, we get,
Taking 3 common on y variable group,
We can see that it is in the form and .
Applying these we get,
.
Simple division,
We know that the equation of a hyperbola opening left and right in standard form is:
Where, the centre is and the vertices are .
Comparing this with the above equation we can find ‘a’ and ‘b’ values.
That is,
We know the eccentricity is given by
Substituting
Therefore distance between foci is, substituting we get,
So, the correct answer is “Option C”.
Note: All we do is convert the given equation into the standard hyperbola equation. So that we can find ‘a’ and ‘b’ values easily. Knowing the values of ‘a’ and ‘b’ we can find eccentricity. Now we know the values of eccentricity and ‘a’, using this we can find the distance between foci. Similarly we do it for any problem with different equations.
Complete step-by-step answer:
Now given a polynomial,
Separating x and y variable separately, shifting constant on right hand side we get,
Adding 4 on both side and subtract -3 on both side, we get,
Taking 3 common on y variable group,
We can see that it is in the form
Applying these we get,
Simple division,
We know that the equation of a hyperbola opening left and right in standard form is:
Comparing this with the above equation we can find ‘a’ and ‘b’ values.
That is,
We know the eccentricity is given by
Therefore distance between foci is,
So, the correct answer is “Option C”.
Note: All we do is convert the given equation into the standard hyperbola equation. So that we can find ‘a’ and ‘b’ values easily. Knowing the values of ‘a’ and ‘b’ we can find eccentricity. Now we know the values of eccentricity and ‘a’, using this we can find the distance between foci. Similarly we do it for any problem with different equations.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the technique used to separate the components class 11 chemistry CBSE
