
The dimensional formula of \[\dfrac{1}{2}{\mu _o}{H^2}\] (\[{\mu _o}\]-Permeability of free space and \[H\]-magnetic field intensity) is:
A. \[{\text{ML}}{{\text{T}}^{{\text{ - 1}}}}\]
B. \[{\text{M}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}\]
C. \[{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}\]
D. \[{\text{M}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 1}}}}\]
Answer
550.5k+ views
Hint:We are asked to find the dimensional formula of a given quantity. To find the dimensional formula of the quantity, first find the dimensions of each term of the quantity. Then combine them to find the dimensional formula of the whole quantity.
Complete step by step answer:
Given the quantity, \[\dfrac{1}{2}{\mu _o}{H^2}\], where \[{\mu _o}\] is permeability of free space and \[H\] is magnetic field intensity.
Let \[A = \dfrac{1}{2}{\mu _o}{H^2}\] ………………....(i)
To find the dimension of the above quantity, we check the dimension of \[{\mu _o}\] and \[H\].The unit of \[{\mu _o}\] is,
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{Newton}}} \right]}}{{\left[ {{\text{Ampere}}} \right]}} = \dfrac{{\left[ {\text{N}} \right]}}{{\left[ {\text{A}} \right]}}\] …………....(ii)
The dimension of Newton is \[\left[ {\text{N}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]and ampere is \[\left[ {\text{A}} \right] = \left[ {\text{I}} \right]\]
where \[{\text{M}}\] is the dimension of mass, \[{\text{L}}\] is the dimension of length,\[{\text{T}}\] is the dimension of time and \[{\text{I}}\] is dimension of current.
Putting the values of \[\left[ {\text{N}} \right]\] and \[\left[ {\text{A}} \right]\] in equation (i), we get
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]}}{{\left[ {\text{I}} \right]}}\]
\[ \Rightarrow \left[ {{\mu _o}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{{\text{ - 1}}}}} \right]\] ………………(iii)
The unit of \[H\] is,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {{\text{Ampere}}} \right]}}{{\left[ {{\text{Metre}}} \right]}}\]
Now putting the dimension of ampere and metre we get,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {\text{I}} \right]}}{{\left[ {\text{L}} \right]}} = \left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]\] ……………....(iv)
Putting the values of dimension from equations (iii) and (iv) in equation (i) we get
\[\left[ A \right] = \left[ {\dfrac{1}{2}{\mu _o}{H^2}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}} \right]{\left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]^2}\]
\[ \Rightarrow \left[ A \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}{{\text{I}}^2}{{\text{L}}^{{\text{ - 2}}}}} \right]\]
\[ \therefore \left[ A \right] = \left[ {{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]
Therefore the dimension of \[\dfrac{1}{2}{\mu _o}{H^2}\] is \[{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}\].
Hence, the correct answer is option C.
Note: Whenever it is given to find out the dimension of a quantity, then first find the dimension of each term in the given quantity and combine them to find the dimension of the quantity. To find dimension of a quantity, we use dimensional analysis and see their dependency on seven fundamental units which are mass [M], length [L], time [T], electric current [I], thermodynamic temperature [K], luminous intensity [cd] and amount of substance [mol].
Complete step by step answer:
Given the quantity, \[\dfrac{1}{2}{\mu _o}{H^2}\], where \[{\mu _o}\] is permeability of free space and \[H\] is magnetic field intensity.
Let \[A = \dfrac{1}{2}{\mu _o}{H^2}\] ………………....(i)
To find the dimension of the above quantity, we check the dimension of \[{\mu _o}\] and \[H\].The unit of \[{\mu _o}\] is,
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{Newton}}} \right]}}{{\left[ {{\text{Ampere}}} \right]}} = \dfrac{{\left[ {\text{N}} \right]}}{{\left[ {\text{A}} \right]}}\] …………....(ii)
The dimension of Newton is \[\left[ {\text{N}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]and ampere is \[\left[ {\text{A}} \right] = \left[ {\text{I}} \right]\]
where \[{\text{M}}\] is the dimension of mass, \[{\text{L}}\] is the dimension of length,\[{\text{T}}\] is the dimension of time and \[{\text{I}}\] is dimension of current.
Putting the values of \[\left[ {\text{N}} \right]\] and \[\left[ {\text{A}} \right]\] in equation (i), we get
\[\left[ {{\mu _o}} \right] = \dfrac{{\left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}} \right]}}{{\left[ {\text{I}} \right]}}\]
\[ \Rightarrow \left[ {{\mu _o}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{{\text{ - 1}}}}} \right]\] ………………(iii)
The unit of \[H\] is,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {{\text{Ampere}}} \right]}}{{\left[ {{\text{Metre}}} \right]}}\]
Now putting the dimension of ampere and metre we get,
\[\left[ {\text{H}} \right] = \dfrac{{\left[ {\text{I}} \right]}}{{\left[ {\text{L}} \right]}} = \left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]\] ……………....(iv)
Putting the values of dimension from equations (iii) and (iv) in equation (i) we get
\[\left[ A \right] = \left[ {\dfrac{1}{2}{\mu _o}{H^2}} \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}} \right]{\left[ {{\text{I}}{{\text{L}}^{{\text{ - 1}}}}} \right]^2}\]
\[ \Rightarrow \left[ A \right] = \left[ {{\text{ML}}{{\text{T}}^{{\text{ - 2}}}}{{\text{I}}^{ - 1}}{{\text{I}}^2}{{\text{L}}^{{\text{ - 2}}}}} \right]\]
\[ \therefore \left[ A \right] = \left[ {{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}} \right]\]
Therefore the dimension of \[\dfrac{1}{2}{\mu _o}{H^2}\] is \[{\text{M}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}\].
Hence, the correct answer is option C.
Note: Whenever it is given to find out the dimension of a quantity, then first find the dimension of each term in the given quantity and combine them to find the dimension of the quantity. To find dimension of a quantity, we use dimensional analysis and see their dependency on seven fundamental units which are mass [M], length [L], time [T], electric current [I], thermodynamic temperature [K], luminous intensity [cd] and amount of substance [mol].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

