
The dimensional formula for acceleration, velocity and length are \[\alpha {{\beta }^{-2}},\alpha {{\beta }^{-1}}\text{ and }\alpha y\] what is the dimensional formula for the coefficient of friction.
\[\begin{align}
& \text{A}\text{. }\alpha \beta y \\
& \text{B}\text{. }{{\alpha }^{-1}}{{\beta }^{10}}{{y}^{0}} \\
& \text{C}\text{. }{{\alpha }^{0}}{{\beta }^{-1}}{{y}^{0}} \\
& \text{D}\text{. }{{\alpha }^{0}}{{\beta }^{0}}{{y}^{0}} \\
\end{align}\]
Answer
576.6k+ views
Hint: Here we will do dimension analysis of the given quantity to find the dimension of coefficient of friction in terms of α, β and y. First we can compare the dimensions of the acceleration, velocity and length given here with the actual dimensions which are in terms of M, L and T. Then by analysis which dimensions α, β and y are representing we can write the dimension for the coefficient of the friction.
Formula used:
\[f=\mu N\]
Complete answer:
The actual dimensions for the acceleration, velocity and length are given as follows
\[\begin{align}
& a={{L}^{1}}{{T}^{-2}} \\
& v={{L}^{1}}{{T}^{-1}} \\
& l={{L}^{1}} \\
\end{align}\] ………….(i)
Where a is acceleration, v is velocity, l is length, L is the dimension for length and T is dimension for time.
And according to question, the dimensions of acceleration, velocity and length are given as
\[\begin{align}
& a={{\alpha }^{1}}{{\beta }^{-2}} \\
& v={{\alpha }^{1}}{{\beta }^{-1}} \\
& l={{\alpha }^{1}}{{y}^{1}} \\
\end{align}\] ……….. (ii)
Comparing the set of equations (i) and (ii) we get
\[\begin{align}
& \alpha =L \\
& \beta =T \\
& y=1 \\
\end{align}\]
Which shows that α has dimension of length L and β has dimension of time and y is dimensionless quantity.
Now the coefficient of friction is also a dimensionless quantity, as the static friction is given as
\[f=\mu N\]
Where μ is coefficient of friction and N is the normal force. So μ can be given as
\[\mu =\dfrac{f}{N}\]
And static friction and normal force have the same dimension of force. Hence in terms of dimension coefficient of friction is given as
\[\mu =1\]
That is μ is also a dimensionless quantity. Hence the power of α and β will be zero and y is already a dimensionless quantity.
Hence coefficient of friction in term of α, β and y can be given as \[{{\alpha }^{0}}{{\beta }^{0}}{{y}^{0}}\] which will be numerically equal to one, that is dimensionless quantity.
So, the correct answer is “Option D”.
Note:
As y is also a dimensionless quantity, therefore dimension of coefficient of friction can be equal to y. But here as there is no option like that we consider the option D. Remember that any variable having power zero has value one. Therefore option D satisfies the answer to the question.
Formula used:
\[f=\mu N\]
Complete answer:
The actual dimensions for the acceleration, velocity and length are given as follows
\[\begin{align}
& a={{L}^{1}}{{T}^{-2}} \\
& v={{L}^{1}}{{T}^{-1}} \\
& l={{L}^{1}} \\
\end{align}\] ………….(i)
Where a is acceleration, v is velocity, l is length, L is the dimension for length and T is dimension for time.
And according to question, the dimensions of acceleration, velocity and length are given as
\[\begin{align}
& a={{\alpha }^{1}}{{\beta }^{-2}} \\
& v={{\alpha }^{1}}{{\beta }^{-1}} \\
& l={{\alpha }^{1}}{{y}^{1}} \\
\end{align}\] ……….. (ii)
Comparing the set of equations (i) and (ii) we get
\[\begin{align}
& \alpha =L \\
& \beta =T \\
& y=1 \\
\end{align}\]
Which shows that α has dimension of length L and β has dimension of time and y is dimensionless quantity.
Now the coefficient of friction is also a dimensionless quantity, as the static friction is given as
\[f=\mu N\]
Where μ is coefficient of friction and N is the normal force. So μ can be given as
\[\mu =\dfrac{f}{N}\]
And static friction and normal force have the same dimension of force. Hence in terms of dimension coefficient of friction is given as
\[\mu =1\]
That is μ is also a dimensionless quantity. Hence the power of α and β will be zero and y is already a dimensionless quantity.
Hence coefficient of friction in term of α, β and y can be given as \[{{\alpha }^{0}}{{\beta }^{0}}{{y}^{0}}\] which will be numerically equal to one, that is dimensionless quantity.
So, the correct answer is “Option D”.
Note:
As y is also a dimensionless quantity, therefore dimension of coefficient of friction can be equal to y. But here as there is no option like that we consider the option D. Remember that any variable having power zero has value one. Therefore option D satisfies the answer to the question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

