
The dimension of coefficient of viscosity.
A. $\left[ MLT \right]$
B. \[\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
C. \[\left[ ML{{T}^{-1}} \right]\]
D. \[\left[ ML{{T}^{-2}} \right]\]
Answer
582.9k+ views
Hint: To write dimensional formula for any quantity we need formula for that. Then we write formulas in basic terms like mass , time, length etc.
We can define coefficient of viscosity with following formula as below:
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Where \[\eta \] is coefficient of viscosity.
Complete step-by-step answer:
We generally define coefficient of viscosity as resistance which a fluid can exerts against a flow caused by applied force.
Formula of coefficient of viscosity is
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Now we can write dimensional formulas for each quantity.
Dimensional formula for force is $\left[ ML{{T}^{-2}} \right]$ because $F=ma$
Dimensional formula for distance is $\left[ L \right]$
Dimensional formula for the area of the layer is $\left[ {{L}^{2}} \right]$ because the area is generally defined as a centimeter square.
Dimensional formula for velocity is $\left[ L{{T}^{-1}} \right]$ because velocity is defined as ratio of distance and time.
Now we can find dimensional formula for coefficient of viscosity is
\[\Rightarrow \eta =\dfrac{\left[ ML{{T}^{-2}} \right]\,\times \,\left[ L \right]}{\left[ {{L}^{2}} \right]\times \,\left[ L{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\dfrac{\left[ M{{L}^{2}}{{T}^{-2}} \right]\,}{\,\left[ {{L}^{3}}{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\left[ M{{L}^{2-3}}{{T}^{-2+1}} \right]\]
\[\Rightarrow \eta =\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
Hence option B is correct.
Note: To simplify dimensional formulas we can apply multiplication and division properties of exponent.
According to the multiplication property of exponent if we have exponent terms of same base in multiplication then we can add their exponent. We can write it as below:
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
According to the division property of exponent if we have exponent terms of the same base in division then we can subtract their exponent. We can write it as below:
${{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
We can define coefficient of viscosity with following formula as below:
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Where \[\eta \] is coefficient of viscosity.
Complete step-by-step answer:
We generally define coefficient of viscosity as resistance which a fluid can exerts against a flow caused by applied force.
Formula of coefficient of viscosity is
\[\eta =\dfrac{\tan gential\,force\,\times \,dis\tan ce\,\,between\,layers}{area\,of\,layer\times \,velocity}\]
Now we can write dimensional formulas for each quantity.
Dimensional formula for force is $\left[ ML{{T}^{-2}} \right]$ because $F=ma$
Dimensional formula for distance is $\left[ L \right]$
Dimensional formula for the area of the layer is $\left[ {{L}^{2}} \right]$ because the area is generally defined as a centimeter square.
Dimensional formula for velocity is $\left[ L{{T}^{-1}} \right]$ because velocity is defined as ratio of distance and time.
Now we can find dimensional formula for coefficient of viscosity is
\[\Rightarrow \eta =\dfrac{\left[ ML{{T}^{-2}} \right]\,\times \,\left[ L \right]}{\left[ {{L}^{2}} \right]\times \,\left[ L{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\dfrac{\left[ M{{L}^{2}}{{T}^{-2}} \right]\,}{\,\left[ {{L}^{3}}{{T}^{-1}} \right]}\]
\[\Rightarrow \eta =\left[ M{{L}^{2-3}}{{T}^{-2+1}} \right]\]
\[\Rightarrow \eta =\left[ M{{L}^{-1}}{{T}^{-1}} \right]\]
Hence option B is correct.
Note: To simplify dimensional formulas we can apply multiplication and division properties of exponent.
According to the multiplication property of exponent if we have exponent terms of same base in multiplication then we can add their exponent. We can write it as below:
${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$
According to the division property of exponent if we have exponent terms of the same base in division then we can subtract their exponent. We can write it as below:
${{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

