
The differential equation of the family of curves $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$ ($\lambda $is arbitrary constant)
A.$({x^2} - {a^2}){y_1} = xy$
B.$({x^2} - {a^2}){y_2} - xy = 0$
C.${x^2}{y_2} - {a^2}y = 0$
D.$({x^2} - {a^2}){y_1} + xy = 0$
Answer
581.7k+ views
Hint: The differential equation can be found by eliminating $\lambda $from the given family of curves. As there is only one variable that needs to be eliminated, we will first transform the equation so that the $\lambda $that is to be eliminated is on one side and the variables on others. By differentiating both sides, we will eliminate the variable and find the differential equation in terms of$x,y,{y_1},a$.
Complete step by step solution:
Given curve: $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$
We will transform the curve into a simpler equation so that eliminating $\lambda $could be easy.
$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$
$\dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}}$
$\dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}}$
Cross multiplying,
${a^2}{y^2} = \left( {{a^2} - {x^2}} \right)\left( {{a^2} + {\lambda ^2}} \right)$
$\dfrac{{\left( {{a^2} - {x^2}} \right)}}{{{a^2}{y^2}}} = \dfrac{1}{{{a^2} + {\lambda ^2}}}$
$\dfrac{{{a^2}}}{{{a^2}{y^2}}} - \dfrac{{{x^2}}}{{{a^2}{y^2}}} = \dfrac{1}{{{a^2} + {\lambda ^2}}}$
Now we have constants on one side and variables on one. By differentiating, we can easily eliminate $\lambda $
$\dfrac{1}{{{y^2}}} - \dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{1}{{{a^2} + {\lambda ^2}}}$
Differentiating the above equation w.r.t $x$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) - \dfrac{d}{{dx}}\left\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right)$
Now, we know that derivative of a constant is zero
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right) = 0$ …(i)
Also, $\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = \dfrac{d}{{dx}}\left( {{y^{ - 2}}} \right)$
Now, derivative of ${x^n}$ is $n{x^{n - 1}}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = - 2{y^{ - 3}}\dfrac{{dy}}{{dx}}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = - 2{y^{ - 3}}{y^1} = - \dfrac{{2{y_1}}}{{{y^3}}}$ …(ii)
Now, $\dfrac{d}{{dx}}\left\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\} = \dfrac{1}{{{a^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)$
Now, applying the division rule, i.e.
$\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\left( {u'} \right) - u\left( {v'} \right)}}{{{v^2}}}$ where, $u'$and $v'$is the derivative of u and v with respect to $x$
Using this rule to find, $\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)$
$\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{\left( {{y^2}} \right)\left( {\dfrac{d}{{dx}}\left( {{x^2}} \right)} \right) - \left( {{x^2}} \right)\left( {\dfrac{d}{{dx}}\left( {{y^2}} \right)} \right)}}{{{{\left( {{y^2}} \right)}^2}}}$
$\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{\left( {{y^2}} \right)2x - \left( {{x^2}} \right)2y\dfrac{{dy}}{{dx}}}}{{{y^4}}}$
$\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}$
$\dfrac{1}{{{a^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{1}{{{a^2}}}\left( {\dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}} \right)$ …(iii)
Now, $\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) - \dfrac{d}{{dx}}\left\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right)$
Substituting, (i), (ii) and (iii)
$ - \dfrac{{2{y_1}}}{{{y^3}}} - \dfrac{1}{{{a^2}}}\left( {\dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}} \right) = 0$
$\dfrac{{2{y_1}}}{{{y^3}}} = \dfrac{1}{{{a^2}}}\left( {\dfrac{{2{x^2}}}{{{y^3}}}{y_1} - \dfrac{{2x}}{{{y^2}}}} \right)$
$\dfrac{{2{a^2}{y_1}}}{{{y^3}}} = \dfrac{{2{x^2}{y_1} - 2xy}}{{{y^3}}}$
Now, as we know$y \ne 0$
$2{a^2}{y_1} = 2{x^2}{y_1} - 2xy$
\[2xy = 2{x^2}{y_1} - 2{a^2}{y_1}\]
\[xy = \left( {{x^2} - {a^2}} \right){y_1}\]
$({x^2} - {a^2}){y_1} = xy$
Hence, the differential equation of given family of curves $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$is $({x^2} - {a^2}){y_1} = xy$
Therefore, option A $({x^2} - {a^2}){y_1} = xy$ is correct
Note: A different approach can be by making an estimation of the differential equation by looking at the number of arbitrary constants present in the given family of curves. The number of arbitrary constants present indicates the degree of the differential equation.
In the given family of curves $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$, there is only a single arbitrary constant. So the degree of the differential equation would be 1, therefore making options b and c as incorrect. As mentioned, the method does only estimation, not a perfect way to get the correct answer.
Complete step by step solution:
Given curve: $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$
We will transform the curve into a simpler equation so that eliminating $\lambda $could be easy.
$\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$
$\dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}}$
$\dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}}$
Cross multiplying,
${a^2}{y^2} = \left( {{a^2} - {x^2}} \right)\left( {{a^2} + {\lambda ^2}} \right)$
$\dfrac{{\left( {{a^2} - {x^2}} \right)}}{{{a^2}{y^2}}} = \dfrac{1}{{{a^2} + {\lambda ^2}}}$
$\dfrac{{{a^2}}}{{{a^2}{y^2}}} - \dfrac{{{x^2}}}{{{a^2}{y^2}}} = \dfrac{1}{{{a^2} + {\lambda ^2}}}$
Now we have constants on one side and variables on one. By differentiating, we can easily eliminate $\lambda $
$\dfrac{1}{{{y^2}}} - \dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{1}{{{a^2} + {\lambda ^2}}}$
Differentiating the above equation w.r.t $x$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) - \dfrac{d}{{dx}}\left\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right)$
Now, we know that derivative of a constant is zero
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right) = 0$ …(i)
Also, $\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = \dfrac{d}{{dx}}\left( {{y^{ - 2}}} \right)$
Now, derivative of ${x^n}$ is $n{x^{n - 1}}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = - 2{y^{ - 3}}\dfrac{{dy}}{{dx}}$
$\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) = - 2{y^{ - 3}}{y^1} = - \dfrac{{2{y_1}}}{{{y^3}}}$ …(ii)
Now, $\dfrac{d}{{dx}}\left\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\} = \dfrac{1}{{{a^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)$
Now, applying the division rule, i.e.
$\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\left( {u'} \right) - u\left( {v'} \right)}}{{{v^2}}}$ where, $u'$and $v'$is the derivative of u and v with respect to $x$
Using this rule to find, $\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)$
$\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{\left( {{y^2}} \right)\left( {\dfrac{d}{{dx}}\left( {{x^2}} \right)} \right) - \left( {{x^2}} \right)\left( {\dfrac{d}{{dx}}\left( {{y^2}} \right)} \right)}}{{{{\left( {{y^2}} \right)}^2}}}$
$\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{\left( {{y^2}} \right)2x - \left( {{x^2}} \right)2y\dfrac{{dy}}{{dx}}}}{{{y^4}}}$
$\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}$
$\dfrac{1}{{{a^2}}}\dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right) = \dfrac{1}{{{a^2}}}\left( {\dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}} \right)$ …(iii)
Now, $\dfrac{d}{{dx}}\left( {\dfrac{1}{{{y^2}}}} \right) - \dfrac{d}{{dx}}\left\{ {\dfrac{1}{{{a^2}}}\left( {\dfrac{{{x^2}}}{{{y^2}}}} \right)} \right\} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{{a^2} + {\lambda ^2}}}} \right)$
Substituting, (i), (ii) and (iii)
$ - \dfrac{{2{y_1}}}{{{y^3}}} - \dfrac{1}{{{a^2}}}\left( {\dfrac{{2x}}{{{y^2}}} - \dfrac{{2{x^2}}}{{{y^3}}}{y_1}} \right) = 0$
$\dfrac{{2{y_1}}}{{{y^3}}} = \dfrac{1}{{{a^2}}}\left( {\dfrac{{2{x^2}}}{{{y^3}}}{y_1} - \dfrac{{2x}}{{{y^2}}}} \right)$
$\dfrac{{2{a^2}{y_1}}}{{{y^3}}} = \dfrac{{2{x^2}{y_1} - 2xy}}{{{y^3}}}$
Now, as we know$y \ne 0$
$2{a^2}{y_1} = 2{x^2}{y_1} - 2xy$
\[2xy = 2{x^2}{y_1} - 2{a^2}{y_1}\]
\[xy = \left( {{x^2} - {a^2}} \right){y_1}\]
$({x^2} - {a^2}){y_1} = xy$
Hence, the differential equation of given family of curves $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$is $({x^2} - {a^2}){y_1} = xy$
Therefore, option A $({x^2} - {a^2}){y_1} = xy$ is correct
Note: A different approach can be by making an estimation of the differential equation by looking at the number of arbitrary constants present in the given family of curves. The number of arbitrary constants present indicates the degree of the differential equation.
In the given family of curves $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{a^2} + {\lambda ^2}}} = 1$, there is only a single arbitrary constant. So the degree of the differential equation would be 1, therefore making options b and c as incorrect. As mentioned, the method does only estimation, not a perfect way to get the correct answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

