
The differentiable function y = f(x) has a property that the chord joining any two points $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$ . Given that $f\left( 1 \right)=-1$ then find $\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)=}$
$\begin{align}
& a)\dfrac{1}{6} \\
& b)\dfrac{1}{8} \\
& c)\dfrac{1}{12} \\
& d)\dfrac{1}{24} \\
\end{align}$
Answer
510.6k+ views
Hint: Now we are given that chord joining any two points $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$ hence we will write equation of chord joining the points $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ . Now the chord passes through $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$ . Hence we substitute x = 0 and y = $\left( 2{{x}_{1}}{{x}_{2}} \right)$ in the equation similarly we know that f(1) = - 1 . hence if we substitute ${{x}_{1}}=1\Rightarrow f\left( {{x}_{1}} \right)=-1$ hence we will get the function f(x). Now since we have f(x) we can easily find the value of $\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}$
Complete step by step answer:
Now we have that a chord joining any two points $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$.
First let us find the equation of chord.
We know that equation of line passing through point $\left( {{x}_{1}},{{x}_{2}} \right)$ and $\left( {{y}_{1}},{{y}_{2}} \right)$ is given by $\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}$
Hence the equation of chord passing through $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ is given by
$\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}$
Now for all point ${{x}_{1}},{{x}_{2}}$ we have the chord passes through $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$
Now substituting x = 0 and y = $2{{x}_{1}}{{x}_{2}}$ we get.
\[\dfrac{-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2{{x}_{1}}{{x}_{2}}-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}\] For all point ${{x}_{1}},{{x}_{2}}$
Since the equation is true for all values of ${{x}_{1}},{{x}_{2}}$ it is also true for ${{x}_{1}}=1$
Now at ${{x}_{1}}=1$ we have $f\left( {{x}_{1}} \right)=-1$ since at x = 1 then f(x) = -1.
Hence substituting this we get
\[\begin{align}
& \dfrac{-1}{{{x}_{2}}-1}=\dfrac{2{{x}_{2}}-\left( -1 \right)}{f\left( {{x}_{2}} \right)-\left( -1 \right)} \\
& \Rightarrow \dfrac{-1}{{{x}_{2}}-1}=\dfrac{2{{x}_{2}}+1}{f\left( {{x}_{2}} \right)+1} \\
\end{align}\]
Now cross multiplying the equations we get
\[-f\left( {{x}_{2}} \right)-1=\left( 2{{x}_{2}}+1 \right)\left( {{x}_{2}}-1 \right)\]
Now opening the bracket on RHS we get
\[\begin{align}
& -f\left( {{x}_{2}} \right)-1=\left( 2{{x}_{2}}^{2}-2{{x}_{2}}+{{x}_{2}}-1 \right) \\
& -f\left( {{x}_{2}} \right)=2{{x}_{2}}^{2}-{{x}_{2}} \\
\end{align}\]
Multiplying by – 1 we get
$f\left( {{x}_{2}} \right)=-2{{x}_{2}}^{2}+{{x}_{2}}$
Now note that ${{x}_{2}}$ here can be any element since the equation was true for all point ${{x}_{1}},{{x}_{2}}$
Hence we have $f\left( x \right)=-2{{x}^{2}}+x$
Now integrating both side from 0 to $\dfrac{1}{2}$ we get
$\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-\int\limits_{0}^{\dfrac{1}{2}}{2{{x}^{2}}}+\int\limits_{0}^{\dfrac{1}{2}}{x}$
\[\begin{align}
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2{{\left[ \dfrac{{{x}^{3}}}{3} \right]}^{\dfrac{1}{2}}}_{0}+{{\left[ \dfrac{{{x}^{2}}}{2} \right]}^{\dfrac{1}{2}}}_{0} \\
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2\left[ \dfrac{{{\left( \dfrac{1}{2} \right)}^{3}}}{3}-0 \right]+\dfrac{{{\left( \dfrac{1}{2} \right)}^{2}}}{2}-0 \\
\end{align}\]
Hence we have
\[\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2\left( \dfrac{1}{24} \right)+\dfrac{1}{8}\]
Taking LCM we get
\[\begin{align}
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-\dfrac{2}{24}+\dfrac{3}{24} \\
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=\dfrac{1}{24} \\
\end{align}\]
So, the correct answer is “Option D”.
Note: Note that we know nothing about the curve but still for any two points $\left( {{x}_{1}},{{x}_{2}} \right)$ and $\left( f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right) \right)$ we know that the line joining two points is $\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}$ .
Hence we can still find the equation of chords and use the conditions.
Also it is important to note that we had the chord always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$ since it always intersect this is true for all point ${{x}_{1}},{{x}_{2}}$ and not just one particular point.
Complete step by step answer:
Now we have that a chord joining any two points $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$.
First let us find the equation of chord.
We know that equation of line passing through point $\left( {{x}_{1}},{{x}_{2}} \right)$ and $\left( {{y}_{1}},{{y}_{2}} \right)$ is given by $\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}$
Hence the equation of chord passing through $A=\left( {{x}_{1}},f\left( {{x}_{1}} \right) \right)$ and $B=\left( {{x}_{2}},f\left( {{x}_{2}} \right) \right)$ is given by
$\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}$
Now for all point ${{x}_{1}},{{x}_{2}}$ we have the chord passes through $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$
Now substituting x = 0 and y = $2{{x}_{1}}{{x}_{2}}$ we get.
\[\dfrac{-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{2{{x}_{1}}{{x}_{2}}-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}\] For all point ${{x}_{1}},{{x}_{2}}$
Since the equation is true for all values of ${{x}_{1}},{{x}_{2}}$ it is also true for ${{x}_{1}}=1$
Now at ${{x}_{1}}=1$ we have $f\left( {{x}_{1}} \right)=-1$ since at x = 1 then f(x) = -1.
Hence substituting this we get
\[\begin{align}
& \dfrac{-1}{{{x}_{2}}-1}=\dfrac{2{{x}_{2}}-\left( -1 \right)}{f\left( {{x}_{2}} \right)-\left( -1 \right)} \\
& \Rightarrow \dfrac{-1}{{{x}_{2}}-1}=\dfrac{2{{x}_{2}}+1}{f\left( {{x}_{2}} \right)+1} \\
\end{align}\]
Now cross multiplying the equations we get
\[-f\left( {{x}_{2}} \right)-1=\left( 2{{x}_{2}}+1 \right)\left( {{x}_{2}}-1 \right)\]
Now opening the bracket on RHS we get
\[\begin{align}
& -f\left( {{x}_{2}} \right)-1=\left( 2{{x}_{2}}^{2}-2{{x}_{2}}+{{x}_{2}}-1 \right) \\
& -f\left( {{x}_{2}} \right)=2{{x}_{2}}^{2}-{{x}_{2}} \\
\end{align}\]
Multiplying by – 1 we get
$f\left( {{x}_{2}} \right)=-2{{x}_{2}}^{2}+{{x}_{2}}$
Now note that ${{x}_{2}}$ here can be any element since the equation was true for all point ${{x}_{1}},{{x}_{2}}$
Hence we have $f\left( x \right)=-2{{x}^{2}}+x$
Now integrating both side from 0 to $\dfrac{1}{2}$ we get
$\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-\int\limits_{0}^{\dfrac{1}{2}}{2{{x}^{2}}}+\int\limits_{0}^{\dfrac{1}{2}}{x}$
\[\begin{align}
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2{{\left[ \dfrac{{{x}^{3}}}{3} \right]}^{\dfrac{1}{2}}}_{0}+{{\left[ \dfrac{{{x}^{2}}}{2} \right]}^{\dfrac{1}{2}}}_{0} \\
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2\left[ \dfrac{{{\left( \dfrac{1}{2} \right)}^{3}}}{3}-0 \right]+\dfrac{{{\left( \dfrac{1}{2} \right)}^{2}}}{2}-0 \\
\end{align}\]
Hence we have
\[\int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-2\left( \dfrac{1}{24} \right)+\dfrac{1}{8}\]
Taking LCM we get
\[\begin{align}
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=-\dfrac{2}{24}+\dfrac{3}{24} \\
& \int\limits_{0}^{\dfrac{1}{2}}{f\left( x \right)}=\dfrac{1}{24} \\
\end{align}\]
So, the correct answer is “Option D”.
Note: Note that we know nothing about the curve but still for any two points $\left( {{x}_{1}},{{x}_{2}} \right)$ and $\left( f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right) \right)$ we know that the line joining two points is $\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-f\left( {{x}_{1}} \right)}{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}$ .
Hence we can still find the equation of chords and use the conditions.
Also it is important to note that we had the chord always intersects y axis at $\left( 0,2{{x}_{1}}{{x}_{2}} \right)$ since it always intersect this is true for all point ${{x}_{1}},{{x}_{2}}$ and not just one particular point.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
