
The difference between the greatest and the least values of the function, \[f\left( x \right)=\sin 2x-x\] on $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
A. $\pi $
B. 0
C. $\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{3}$
D. $-\dfrac{\sqrt{3}}{2}+\dfrac{2\pi }{3}$
Answer
585.3k+ views
Hint: We will find the greatest and least value of function using the method of differentiation. The differentiation of $f\left( x \right)$ is denoted as $f'\left( x \right)$.
The find the value of x for which $f'\left( x \right)=0$, then the value of $f\left( x \right)$ at x is either greatest value or least value.
Complete step-by-step answer:
Now, we can see that $f\left( x \right)$ is given as $\sin 2x-x$ on interval $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
The differentiation of \[f\left( x \right)=\sin 2x-x\] with respect to x is $f'\left( x \right)$.
\[f\left( x \right)=\sin 2x-x\] ……..(1)
And we know that the differentiation of $\sin 2x=2\cos 2x$.
Now, differentiating equation (1) with respect to x,
$\Rightarrow f'\left( x \right)=2\cos 2x-1..........\left( 2 \right)$
And to find the value of x for which $f\left( x \right)$ is greatest or least, we will have to equal the equation (2) to zero i.e.
$\begin{align}
& f'\left( x \right)=2\cos 2x-1=0 \\
& \Rightarrow 2\cos 2x=1 \\
& \Rightarrow \cos 2x=\dfrac{1}{2} \\
& \Rightarrow 2x={{\cos }^{-1}}\dfrac{1}{2}..............\left( 3 \right) \\
\end{align}$
And we know that ${{\cos }^{-1}}\dfrac{1}{2}=\dfrac{\pi }{3},-\dfrac{\pi }{3}$ (as $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, so there are only two value of ${{\cos }^{-1}}\dfrac{1}{2}$ which come in this interval).
Now,
$\begin{align}
& \Rightarrow 2x=\dfrac{\pi }{3}\ \And \ 2x=-\dfrac{\pi }{3} \\
& \Rightarrow x=\dfrac{\pi }{6}\ and-\dfrac{\pi }{6} \\
\end{align}$
Now, to find the greatest and least value of $f\left( x \right)$. First we will have to find the value of $f\left( x \right)$ at $-\dfrac{\pi }{2},\dfrac{\pi }{2},\dfrac{\pi }{6},-\dfrac{\pi }{6}$ (as it is close interval so we will have to check at boundary also).
$\begin{align}
& f\left( x \right)=\sin 2x-x \\
& \Rightarrow f\left( -\dfrac{\pi }{2} \right)=0-\left( -\dfrac{\pi }{2} \right)=\dfrac{\pi }{2},\ \left( \sin \left( -\pi \right)=-\sin \pi =0 \right) \\
& f\left( \dfrac{\pi }{2} \right)=0-\dfrac{\pi }{2}=-\dfrac{\pi }{2}, \\
& f\left( -\dfrac{\pi }{6} \right)=\sin 2\left( -\dfrac{\pi }{6} \right)-\left( -\dfrac{\pi }{6} \right) \\
& =\sin \left( -\dfrac{\pi }{3} \right)+\dfrac{\pi }{6} \\
& =-\sin \dfrac{\pi }{3}+\dfrac{\pi }{6} \\
& f\left( -\dfrac{\pi }{6} \right)=-\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6}...............\left( 4 \right) \\
\end{align}$
$\begin{align}
& f\left( \dfrac{\pi }{6} \right)=\sin 2\left( \dfrac{\pi }{6} \right)-\dfrac{\pi }{6} \\
& =\sin \dfrac{\pi }{3}-\dfrac{\pi }{6} \\
& f\left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}............\left( 5 \right) \\
\end{align}$
We can see that,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}\simeq 0.34\ and\ -\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6}\simeq -0.34 \\
& \dfrac{\pi }{2}\simeq 1.57 \\
& -\dfrac{\pi }{2}\simeq -1.57 \\
\end{align}\]
From above, clearly we can see that the greatest value of $f\left( x \right)$ on $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ is $\dfrac{\pi }{2}$ and the least value of $f\left( x \right)$ is $-\dfrac{\pi }{2}$.
So, the difference between the greatest and least value of $f\left( x \right)=\dfrac{\pi }{2}-\left( -\dfrac{\pi }{2} \right)$
$\begin{align}
& =\dfrac{\pi }{2}+\dfrac{\pi }{2} \\
& =\pi \\
\end{align}$
Note: In this question, students can make mistake such as they don’t check the value of $f\left( x \right)$ at boundary and can find the answer as $\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}$ is the greatest and $-\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}$ is the least value and difference between them as,
$\begin{align}
& \dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}-\left( -\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6} \right) \\
& =\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}+\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6} \\
& =\sqrt{3}-\dfrac{\pi }{3} \\
\end{align}$
But it is incorrect as the interval is the close interval. So, we have to check the value of $f\left( x \right)$ at boundary.
The find the value of x for which $f'\left( x \right)=0$, then the value of $f\left( x \right)$ at x is either greatest value or least value.
Complete step-by-step answer:
Now, we can see that $f\left( x \right)$ is given as $\sin 2x-x$ on interval $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$.
The differentiation of \[f\left( x \right)=\sin 2x-x\] with respect to x is $f'\left( x \right)$.
\[f\left( x \right)=\sin 2x-x\] ……..(1)
And we know that the differentiation of $\sin 2x=2\cos 2x$.
Now, differentiating equation (1) with respect to x,
$\Rightarrow f'\left( x \right)=2\cos 2x-1..........\left( 2 \right)$
And to find the value of x for which $f\left( x \right)$ is greatest or least, we will have to equal the equation (2) to zero i.e.
$\begin{align}
& f'\left( x \right)=2\cos 2x-1=0 \\
& \Rightarrow 2\cos 2x=1 \\
& \Rightarrow \cos 2x=\dfrac{1}{2} \\
& \Rightarrow 2x={{\cos }^{-1}}\dfrac{1}{2}..............\left( 3 \right) \\
\end{align}$
And we know that ${{\cos }^{-1}}\dfrac{1}{2}=\dfrac{\pi }{3},-\dfrac{\pi }{3}$ (as $x\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, so there are only two value of ${{\cos }^{-1}}\dfrac{1}{2}$ which come in this interval).
Now,
$\begin{align}
& \Rightarrow 2x=\dfrac{\pi }{3}\ \And \ 2x=-\dfrac{\pi }{3} \\
& \Rightarrow x=\dfrac{\pi }{6}\ and-\dfrac{\pi }{6} \\
\end{align}$
Now, to find the greatest and least value of $f\left( x \right)$. First we will have to find the value of $f\left( x \right)$ at $-\dfrac{\pi }{2},\dfrac{\pi }{2},\dfrac{\pi }{6},-\dfrac{\pi }{6}$ (as it is close interval so we will have to check at boundary also).
$\begin{align}
& f\left( x \right)=\sin 2x-x \\
& \Rightarrow f\left( -\dfrac{\pi }{2} \right)=0-\left( -\dfrac{\pi }{2} \right)=\dfrac{\pi }{2},\ \left( \sin \left( -\pi \right)=-\sin \pi =0 \right) \\
& f\left( \dfrac{\pi }{2} \right)=0-\dfrac{\pi }{2}=-\dfrac{\pi }{2}, \\
& f\left( -\dfrac{\pi }{6} \right)=\sin 2\left( -\dfrac{\pi }{6} \right)-\left( -\dfrac{\pi }{6} \right) \\
& =\sin \left( -\dfrac{\pi }{3} \right)+\dfrac{\pi }{6} \\
& =-\sin \dfrac{\pi }{3}+\dfrac{\pi }{6} \\
& f\left( -\dfrac{\pi }{6} \right)=-\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6}...............\left( 4 \right) \\
\end{align}$
$\begin{align}
& f\left( \dfrac{\pi }{6} \right)=\sin 2\left( \dfrac{\pi }{6} \right)-\dfrac{\pi }{6} \\
& =\sin \dfrac{\pi }{3}-\dfrac{\pi }{6} \\
& f\left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}............\left( 5 \right) \\
\end{align}$
We can see that,
\[\begin{align}
& \dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}\simeq 0.34\ and\ -\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6}\simeq -0.34 \\
& \dfrac{\pi }{2}\simeq 1.57 \\
& -\dfrac{\pi }{2}\simeq -1.57 \\
\end{align}\]
From above, clearly we can see that the greatest value of $f\left( x \right)$ on $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$ is $\dfrac{\pi }{2}$ and the least value of $f\left( x \right)$ is $-\dfrac{\pi }{2}$.
So, the difference between the greatest and least value of $f\left( x \right)=\dfrac{\pi }{2}-\left( -\dfrac{\pi }{2} \right)$
$\begin{align}
& =\dfrac{\pi }{2}+\dfrac{\pi }{2} \\
& =\pi \\
\end{align}$
Note: In this question, students can make mistake such as they don’t check the value of $f\left( x \right)$ at boundary and can find the answer as $\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}$ is the greatest and $-\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}$ is the least value and difference between them as,
$\begin{align}
& \dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}-\left( -\dfrac{\sqrt{3}}{2}+\dfrac{\pi }{6} \right) \\
& =\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6}+\dfrac{\sqrt{3}}{2}-\dfrac{\pi }{6} \\
& =\sqrt{3}-\dfrac{\pi }{3} \\
\end{align}$
But it is incorrect as the interval is the close interval. So, we have to check the value of $f\left( x \right)$ at boundary.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

