
The diagonals of a rectangle are perpendicular to each other.
(a). True
(b). False
(c). Only when the rectangle is also a rhombus.
(d). None of these.
Answer
614.1k+ views
- Hint: Draw a rectangle, with diagonals. From the figure, find out if the diagonals are perpendicular to each other or not, if they are then the statement is true or else the statement is false.
Complete step-by-step answer: -
Consider the rectangle ABCD drawn below.
We know that a rectangle has 2 diagonals. From the figure we can see that AC and BD are the diagonals of the rectangle ABCD. From the figure we can understand that each one is a line segment drawn between the opposite corners of the rectangle. The diagonals of the rectangle are equal i.e. AC = BD and they bisect each other. But the diagonals are not perpendicular to each other. We know that if diagonals are perpendicular then they cut at \[{{90}^{\circ }}\]. But in the rectangle the diagonals don’t cut at \[{{90}^{\circ }}\]. Thus the statement given is false.
If in case of square and rhombus, the diagonals are perpendicular to each other. But for rectangles, parallelograms, trapeziums the diagonals are not perpendicular.
\[\therefore \] The diagonals of a rectangle are not perpendicular to each other. The given statement is false.
\[\therefore \] Option (b) is the correct answer.
Note: If you are having doubt about the diagonals if they are perpendicular or not always draw a figure and confirm it. If we draw a rectangle with diagonals, we can see that they are not perpendicular. If we draw a square, their diagonals are always perpendicular.
Complete step-by-step answer: -
Consider the rectangle ABCD drawn below.
We know that a rectangle has 2 diagonals. From the figure we can see that AC and BD are the diagonals of the rectangle ABCD. From the figure we can understand that each one is a line segment drawn between the opposite corners of the rectangle. The diagonals of the rectangle are equal i.e. AC = BD and they bisect each other. But the diagonals are not perpendicular to each other. We know that if diagonals are perpendicular then they cut at \[{{90}^{\circ }}\]. But in the rectangle the diagonals don’t cut at \[{{90}^{\circ }}\]. Thus the statement given is false.
If in case of square and rhombus, the diagonals are perpendicular to each other. But for rectangles, parallelograms, trapeziums the diagonals are not perpendicular.
\[\therefore \] The diagonals of a rectangle are not perpendicular to each other. The given statement is false.
\[\therefore \] Option (b) is the correct answer.
Note: If you are having doubt about the diagonals if they are perpendicular or not always draw a figure and confirm it. If we draw a rectangle with diagonals, we can see that they are not perpendicular. If we draw a square, their diagonals are always perpendicular.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

