
The derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\] is
(a) \[\dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}\]
(b) \[\dfrac{{1 - \cos x}}{{\left( {x + \sin x} \right)\left( {1 + \sin x} \right)}}\]
(c) \[\dfrac{{1 - \cos x}}{{\left( {x - \sin x} \right)\left( {1 + \cos x} \right)}}\]
(d) \[\dfrac{{1 + \cos x}}{{\left( {x - \sin x} \right)\left( {1 - \cos x} \right)}}\]
Answer
564k+ views
Hint:
Here, we need to find the derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\]. Let \[u = \ln \left( {x + \sin x} \right)\] and \[v = \left( {x + \cos x} \right)\]. We will differentiate these two equations with respect to \[x\] to find the value of \[\dfrac{{du}}{{dx}}\] and \[\dfrac{{dv}}{{dx}}\]. Using these values, we can find the value of \[\dfrac{{du}}{{dv}}\], and hence, the derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\].
Formula Used: The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Complete step by step solution:
Let \[u = \ln \left( {x + \sin x} \right)\] and \[v = \left( {x + \cos x} \right)\].
We need to find \[\dfrac{{d\left[ {\ln \left( {x + \sin x} \right)} \right]}}{{d\left( {x + \cos x} \right)}}\], that is \[\dfrac{{du}}{{dv}}\].
We will differentiate the equations \[u = \ln \left( {x + \sin x} \right)\] and \[v = \left( {x + \cos x} \right)\].
First, we will differentiate both sides of \[u = \ln \left( {x + \sin x} \right)\] with respect to \[x\].
Differentiating both sides, we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{d\left[ {\ln \left( {x + \sin x} \right)} \right]}}{{dx}}\]
The derivative of \[\ln \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
Therefore, we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \dfrac{{d\left( {x + \sin x} \right)}}{{dx}}\]
The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Therefore, the equation becomes
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \left[ {\dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right]\]
The derivative of \[x\] with respect to \[x\] is 1.
The derivative of \[\sin x\] with respect to \[x\] is \[\cos x\].
Therefore, the equation becomes
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \left[ {1 + \cos x} \right] \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{1 + \cos x}}{{x + \sin x}} \\ $
Now, we will differentiate both sides of \[v = \left( {x + \cos x} \right)\] with respect to \[x\].
Differentiating both sides, we get
\[ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{d\left( {x + \cos x} \right)}}{{dx}}\]
Therefore, the equation becomes
\[ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( {\cos x} \right)}}{{dx}}\]
The derivate of \[x\] with respect to \[x\] is 1.
The derivative of \[\cos x\] with respect to \[x\] is \[ - \sin x\].
Therefore, the equation becomes
$ \Rightarrow \dfrac{{dv}}{{dx}} = 1 + \left( { - \sin x} \right) \\
\Rightarrow \dfrac{{dv}}{{dx}} = 1 - \sin x \\ $
Now, we will find the value of \[\dfrac{{du}}{{dv}}\].
Multiplying and dividing the expression by \[dx\], we get
\[ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dv}} \times \dfrac{{dx}}{{dx}}\]
Rewriting the expression, we get
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dv}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{1}{{\dfrac{{dv}}{{dx}}}} \\ $
Substituting \[\dfrac{{du}}{{dx}} = \dfrac{{1 + \cos x}}{{x + \sin x}}\] and \[\dfrac{{dv}}{{dx}} = 1 - \sin x\] in the equation, we get
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dv}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{1 + \cos x}}{{x + \sin x}} \times \dfrac{1}{{1 - \sin x}} \\ $
Therefore, we get
\[\therefore \dfrac{{du}}{{dv}} = \dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}\]
Therefore, we get the derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\] as \[\dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}\].
Thus, the correct option is option (a).
Note:
You should remember to use the chain rule of differentiation. A common mistake is to write the derivative of \[\ln \left( {x + \sin x} \right)\] as \[\dfrac{1}{{x + \sin x}}\]. This is incorrect. According to the chain rule, the derivative of a function \[\ln f\left( x \right)\] is given as \[\dfrac{{d\left[ {\ln \left( {f\left( x \right)} \right)} \right]}}{{dx}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times \dfrac{{d\left[ x \right]}}{{dx}}\].
Here, we need to find the derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\]. Let \[u = \ln \left( {x + \sin x} \right)\] and \[v = \left( {x + \cos x} \right)\]. We will differentiate these two equations with respect to \[x\] to find the value of \[\dfrac{{du}}{{dx}}\] and \[\dfrac{{dv}}{{dx}}\]. Using these values, we can find the value of \[\dfrac{{du}}{{dv}}\], and hence, the derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\].
Formula Used: The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Complete step by step solution:
Let \[u = \ln \left( {x + \sin x} \right)\] and \[v = \left( {x + \cos x} \right)\].
We need to find \[\dfrac{{d\left[ {\ln \left( {x + \sin x} \right)} \right]}}{{d\left( {x + \cos x} \right)}}\], that is \[\dfrac{{du}}{{dv}}\].
We will differentiate the equations \[u = \ln \left( {x + \sin x} \right)\] and \[v = \left( {x + \cos x} \right)\].
First, we will differentiate both sides of \[u = \ln \left( {x + \sin x} \right)\] with respect to \[x\].
Differentiating both sides, we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{d\left[ {\ln \left( {x + \sin x} \right)} \right]}}{{dx}}\]
The derivative of \[\ln \left[ {f\left( x \right)} \right]\] is \[\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\].
Therefore, we get
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \dfrac{{d\left( {x + \sin x} \right)}}{{dx}}\]
The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is \[\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}\].
Therefore, the equation becomes
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \left[ {\dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right]\]
The derivative of \[x\] with respect to \[x\] is 1.
The derivative of \[\sin x\] with respect to \[x\] is \[\cos x\].
Therefore, the equation becomes
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{x + \sin x}} \times \left[ {1 + \cos x} \right] \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{1 + \cos x}}{{x + \sin x}} \\ $
Now, we will differentiate both sides of \[v = \left( {x + \cos x} \right)\] with respect to \[x\].
Differentiating both sides, we get
\[ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{d\left( {x + \cos x} \right)}}{{dx}}\]
Therefore, the equation becomes
\[ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{{d\left( x \right)}}{{dx}} + \dfrac{{d\left( {\cos x} \right)}}{{dx}}\]
The derivate of \[x\] with respect to \[x\] is 1.
The derivative of \[\cos x\] with respect to \[x\] is \[ - \sin x\].
Therefore, the equation becomes
$ \Rightarrow \dfrac{{dv}}{{dx}} = 1 + \left( { - \sin x} \right) \\
\Rightarrow \dfrac{{dv}}{{dx}} = 1 - \sin x \\ $
Now, we will find the value of \[\dfrac{{du}}{{dv}}\].
Multiplying and dividing the expression by \[dx\], we get
\[ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dv}} \times \dfrac{{dx}}{{dx}}\]
Rewriting the expression, we get
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dv}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{1}{{\dfrac{{dv}}{{dx}}}} \\ $
Substituting \[\dfrac{{du}}{{dx}} = \dfrac{{1 + \cos x}}{{x + \sin x}}\] and \[\dfrac{{dv}}{{dx}} = 1 - \sin x\] in the equation, we get
$ \Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dv}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{{1 + \cos x}}{{x + \sin x}} \times \dfrac{1}{{1 - \sin x}} \\ $
Therefore, we get
\[\therefore \dfrac{{du}}{{dv}} = \dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}\]
Therefore, we get the derivative of \[\ln \left( {x + \sin x} \right)\] with respect to \[\left( {x + \cos x} \right)\] as \[\dfrac{{1 + \cos x}}{{\left( {x + \sin x} \right)\left( {1 - \sin x} \right)}}\].
Thus, the correct option is option (a).
Note:
You should remember to use the chain rule of differentiation. A common mistake is to write the derivative of \[\ln \left( {x + \sin x} \right)\] as \[\dfrac{1}{{x + \sin x}}\]. This is incorrect. According to the chain rule, the derivative of a function \[\ln f\left( x \right)\] is given as \[\dfrac{{d\left[ {\ln \left( {f\left( x \right)} \right)} \right]}}{{dx}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times \dfrac{{d\left[ x \right]}}{{dx}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

