
The density of mercury is 13.6 g/ cm$^{3}$. Estimate the b value. Atomic mass of Hg=200.
A.29.41 cm$^{3}$
B.58.82 cm$^{3}$
C.98.82 cm$^{3}$
D.None of these
Answer
584.1k+ views
Hint: The b value is related to the degree of diffusion. We are given with the density of mercury, and the molar mass of mercury. By applying the mole concept in the terms of volume as density is indirectly proportional to volume, the b value can be estimated.
Complete step by step answer:
Firstly, if we see the molar mass of mercury is 200 g / mole, and the density is 13.6 g/ cm$^{3}$.
Now, we know density is directly proportional to the molar mass, or mass. It can be written as D= $\dfrac{M}{V}$.
Thus, we can say that 1 mole of mercury will occupy a volume of 14.75 cm$^{3}$/mol. We calculated this by$\dfrac{200}{13.6}$. It represents the $\dfrac{M}{D}$.
We get the value of 14.75 cm$^{3}$/mol, it is the molar volume of mercury.
Now, if we talk about the b value, it is 4 times the molar volume. Thus the obtained value of molar volume can be multiplied by 4 to achieve the estimated value of b, i.e. 4 $\times$ 14.75 cm$^{3}$/mol = 58.87 cm$^{3}$/mol (approximately).
Therefore, the value of b is 58.87 cm$^{3}$ /mol. The correct option is B.
Note: Don’t get confused about how to solve the mole concept. Simply apply the formula of density in the terms of molar mass, and volume. From the density formula, the volume can be calculated, and the value of b is found by doing the 4 times of molar volume.
Complete step by step answer:
Firstly, if we see the molar mass of mercury is 200 g / mole, and the density is 13.6 g/ cm$^{3}$.
Now, we know density is directly proportional to the molar mass, or mass. It can be written as D= $\dfrac{M}{V}$.
Thus, we can say that 1 mole of mercury will occupy a volume of 14.75 cm$^{3}$/mol. We calculated this by$\dfrac{200}{13.6}$. It represents the $\dfrac{M}{D}$.
We get the value of 14.75 cm$^{3}$/mol, it is the molar volume of mercury.
Now, if we talk about the b value, it is 4 times the molar volume. Thus the obtained value of molar volume can be multiplied by 4 to achieve the estimated value of b, i.e. 4 $\times$ 14.75 cm$^{3}$/mol = 58.87 cm$^{3}$/mol (approximately).
Therefore, the value of b is 58.87 cm$^{3}$ /mol. The correct option is B.
Note: Don’t get confused about how to solve the mole concept. Simply apply the formula of density in the terms of molar mass, and volume. From the density formula, the volume can be calculated, and the value of b is found by doing the 4 times of molar volume.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

