
The curved surface area of a right circular cone with height 24 m and radius 7 m is?
(a) $500\text{ }{{\text{m}}^{2}}$
(b) $550\text{ }{{\text{m}}^{2}}$
(c) $\text{607 }{{\text{m}}^{2}}$
(d) $650\text{ }{{\text{m}}^{2}}$
Answer
519.3k+ views
Hint: Calculate the slant height of the right circular cone by using Pythagoras theorem. Then apply the formula for the curved surface area of the cone $=\pi rl$, where $l=$ slant height, $r=$ radius of the cone.
Complete step-by-step answer:
In a right circular cone height is perpendicular to the radius of the cone. Therefore, applying Pythagoras theorem in the right angle triangle formed by height, radius, and slant height, we get, $l=\sqrt{{{r}^{2}}+{{h}^{2}}}$. Here, $l=$ slant height, $r=$ radius of the cone and $h=$ height of cone.
We have been given: \[r=7\text{ m and }h=24\text{ m}\]. Substituting the value of $r\text{ and }h$ in the Pythagorean relation, we get,
\[\begin{align}
& l=\sqrt{{{7}^{2}}+{{24}^{2}}} \\
& =\sqrt{49+576} \\
& =\sqrt{625} \\
& =25 \\
\end{align}\]
Therefore, slant height of the cone $=l=25\text{ m}$.
Now, we know that curved surface area of cone $=\pi rl$. Therefore, substituting the value of\[\pi ,r\ \text{and }l\], we get,
$\begin{align}
& \text{C}\text{.S}\text{.A of cone}=\dfrac{22}{7}\times 7\times 25 \\
& =22\times 25 \\
& =550\text{ }{{\text{m}}^{2}} \\
\end{align}$
Therefore the curved surface area of the cone is $550\text{ }{{\text{m}}^{2}}$.
Hence, option (b) is the correct answer.
Note: Here, one may note that we have used the value of $\pi =\dfrac{22}{7}$. Since, nothing is provided in the question about the value of $\pi $, so we have assumed it $\dfrac{22}{7}$ to make the calculation easy. Also, we have used Pythagoras theorem in the right circular cone. Here, as you can see in the figure that slant height is the hypotenuse of the right angle triangle.
Complete step-by-step answer:
In a right circular cone height is perpendicular to the radius of the cone. Therefore, applying Pythagoras theorem in the right angle triangle formed by height, radius, and slant height, we get, $l=\sqrt{{{r}^{2}}+{{h}^{2}}}$. Here, $l=$ slant height, $r=$ radius of the cone and $h=$ height of cone.

We have been given: \[r=7\text{ m and }h=24\text{ m}\]. Substituting the value of $r\text{ and }h$ in the Pythagorean relation, we get,
\[\begin{align}
& l=\sqrt{{{7}^{2}}+{{24}^{2}}} \\
& =\sqrt{49+576} \\
& =\sqrt{625} \\
& =25 \\
\end{align}\]
Therefore, slant height of the cone $=l=25\text{ m}$.
Now, we know that curved surface area of cone $=\pi rl$. Therefore, substituting the value of\[\pi ,r\ \text{and }l\], we get,
$\begin{align}
& \text{C}\text{.S}\text{.A of cone}=\dfrac{22}{7}\times 7\times 25 \\
& =22\times 25 \\
& =550\text{ }{{\text{m}}^{2}} \\
\end{align}$
Therefore the curved surface area of the cone is $550\text{ }{{\text{m}}^{2}}$.
Hence, option (b) is the correct answer.
Note: Here, one may note that we have used the value of $\pi =\dfrac{22}{7}$. Since, nothing is provided in the question about the value of $\pi $, so we have assumed it $\dfrac{22}{7}$ to make the calculation easy. Also, we have used Pythagoras theorem in the right circular cone. Here, as you can see in the figure that slant height is the hypotenuse of the right angle triangle.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
