
The correct relation between AM, GM and HM is
A. \[\text{AM}\,\text{=}\,\text{GM}\,\text{=}\,\text{HM}\]
B. \[\text{AM}\,\le \,\text{GM}\,\le \,\text{HM}\]
C. \[\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}\]
D. \[\text{AM}\,\text{}\,\text{GM}\,>\,\text{HM}\]
Answer
576.3k+ views
Hint: We will first find the inequality for two numbers a and b, and then extend it to any n numbers using Cauchy induction.
Complete step by step solution: First let’s try to prove that \[\text{AM}\,\ge \,\text{GM}\] for any two numbers a and b, both > 0
We know
\[\text{GM}\,\text{=}\,\sqrt{\text{ab}}\,\text{=}\,\dfrac{\sqrt{\text{a}}\sqrt{\text{b}}\text{+}\sqrt{\text{b}}\sqrt{\text{a}}}{\text{2}}\,\le \,\dfrac{\sqrt{\text{a}}\sqrt{\text{a}}\text{+}\sqrt{\text{b}}\sqrt{\text{b}}}{\text{2}}\,\text{=}\,\dfrac{\text{a+b}}{\text{2}}\]
Why is $\sqrt{\text{a}}\sqrt{\text{b}}\text{+}\sqrt{\text{b}}\sqrt{\text{a}}\,\text{}\sqrt{\text{a}}\sqrt{\text{a}}\text{+}\sqrt{\text{b}}\sqrt{\text{b}}\,\text{=}\,\text{a+b ?}$
Consider ${{\left( \sqrt{a}-\sqrt{b} \right)}^{2}}$ which we know has to be $\ge \,0$
Expanding,
$\begin{align}
& a+b-2\sqrt{ab}\,\ge \,0 \\
& \therefore \,a+b\,\ge \,2\sqrt{ab}\,=\,\sqrt{a}\sqrt{b}+\sqrt{b}\sqrt{a} \\
\end{align}$ .
Now let’s try to prove that $\text{GM}\,\ge \,\text{HM}$.
\[\text{HM}\,\text{of}\,\text{a}\,\text{and}\,\text{b}\,\text{=}\,\dfrac{\text{2ab}}{\text{a+b}}\]
Let us compute $\text{GM}-\text{HM}$
\[\begin{align}
& \text{=}\,\sqrt{\text{ab}}\,\text{=}\,\dfrac{\text{2ab}}{\text{(a+b)}} \\
& \text{=}\,\dfrac{\text{(a+b)}\sqrt{\text{ab}}\text{-2}\sqrt{\text{ab}}\text{.}\sqrt{\text{ab}}}{\text{(a+b)}} \\
& \text{=}\,\dfrac{\sqrt{\text{ab}}\text{ }\!\![\!\!\text{ a+b }\!\!]\!\!\text{ -2}\sqrt{\text{ab}}}{\text{a+b}} \\
& \text{=}\,\dfrac{\sqrt{\text{ab}}{{\left[ \sqrt{\text{a}}\text{-}\sqrt{\text{b}} \right]}^{\text{2}}}}{\text{a+b}}
\end{align}\]
Which has to be positive because a, b >0
$\therefore $ if $\begin{align}
& \text{GM}-\text{HM}\,\ge \,\text{0} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\text{GM}\,\ge \,\text{HM} \\
\end{align}$
So we get the inequality $\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}$ for two positive numbers a and b, with the equality occurring when both a and b are equal
Ideally, the solution ends right here and we can choose $\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}$ Option C as the right answer. However, for the sake of completion, we will use Cauchy induction to prove $\text{AM}\,\ge \,\text{GM}$ for any N positive numbers. $\text{AM}\,\ge \,\text{GM}$ will be a direct result of $\text{AM}\,\ge \,\text{GM}$. This will be done as an extra exercise in the note.
Note: Note: We know $\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}$ for 2 variables. We next prove that if the inequality holds for n variables, then it holds for 2n variables.
Let it hold true for n variables. Let ${{\text{A}}_{\text{n}\,}}\text{,}{{\text{A}}_{\text{n}}}\text{,}\,{{\text{A}}_{\text{2n}}}$ denote arithmetic means of $\left( a,\,...,\,{{a}_{n}} \right)$ q\[\text{(}{{\text{a}}_{\text{n+1}}}\text{,}.....\text{,}\,{{\text{a}}_{\text{2n}}}\text{)}\,\text{,}\,\text{(}{{\text{a}}_{\text{1}}}\text{,}\,...\text{,}\,{{\text{a}}_{\text{2n}}}\text{)}\] respectively; let ${{\text{G}}_{\text{n}}}\text{,}\,{{\text{G}}_{\text{n}}}\text{,}\,{{\text{G}}_{\text{2n}}}$ denote their geometric means. Then
\[{{\text{G}}_{\text{2n}}}\,=\,\sqrt{{{\text{G}}_{\text{n}}}{{\text{G}}_{\text{n}}}}\,\le \,\dfrac{{{\text{G}}_{\text{n}}}\,\text{+}\,{{\text{G}}_{\text{n}}}}{\text{2}}\,\le \,\dfrac{{{\text{A}}_{\text{n}}}{{\text{A}}_{\text{n}}}}{\text{2}}\,=\,{{\text{A}}_{\text{2n}}}\]
Why? $\begin{align}
& {{G}_{n}}\,=\,\sqrt[n]{{{a}_{1}}.....{{a}_{n}}} \\
& {{G}_{n}}\,=\,\sqrt[n]{{{a}_{n+1}}.....{{a}_{2n}}} \\
\end{align}$ But \[\begin{align}
& {{\text{G}}_{\text{2n}}}\,\text{=}\,\sqrt[\text{2n}]{{{\text{a}}_{\text{1}}}.....{{\text{a}}_{\text{2n}}}} \\
& \text{=}\,{{\left( \,\sqrt[\text{2n}]{{{\text{a}}_{\text{1}}}.....{{\text{a}}_{\text{2n}}}}\text{.}\,\sqrt[\text{2n}]{{{\text{a}}_{\text{n+1}}}.....{{\text{a}}_{\text{2n}}}} \right)}^{{}^{\text{1}}/{}_{\text{2}}}} \\
& \text{=}\sqrt{{{\text{G}}_{\text{n}}}{{\text{G}}_{\text{n}}}} \\
\end{align}\]
Now \[\sqrt{{{\text{G}}_{\text{n}}}{{\text{G}}_{\text{n}}}\,\le \,\dfrac{{{\text{G}}_{\text{n}}}\,\text{+}\,{{\text{G}}_{\text{n}}}}{\text{2}}}\]
because $\text{AM}\,\ge \,\text{GM}$ holds for ${{\text{G}}_{\text{n}}}$ and ${{\text{G}}_{\text{n}}}$ and $\dfrac{{{\text{A}}_{\text{n}}}\text{+}{{\text{A}}_{\text{n}}}}{\text{2}}\,\ge \,\dfrac{{{\text{G}}_{\text{n}}}\text{+}{{\text{G}}_{\text{n}}}}{\text{2}}$ because ${{\text{A}}_{\text{n}}}\,\ge \,{{\text{G}}_{\text{n}}}$ and \[\text{A}{{\text{ }\!\!'\!\!\text{ }}_{\text{n}}}\,\ge \,\text{G}{{\text{ }\!\!'\!\!\text{ }}_{\text{n}}}\]
These results show by induction holds for \[\text{n}\,\text{=}\,{{\text{2}}^{\text{k}}}\] for all integers k. For every integer n, there is an N > n such that the theorem holds for N variables.
Now finally, we show that if N > n, and the theorem holds for N variables, then it holds for n variables with
$\text{AM}\,\text{=}\,{{\text{A}}_{\text{n}}}\,\text{and}\,\text{GM}\,\text{=}\,{{\text{G}}_{\text{n}}}$
Set ${{\text{b}}_{\text{k}}}\,\text{=}\,{{\text{a}}_{\text{k}}}$ for $1\,\le \,\text{k}\,\le \,\text{n}$ and let ${{\text{b}}_{\text{k}}}\,\text{=}\,{{\text{a}}_{\text{n}}}$ for $\text{n}\,\text{}\,\text{k}\le \,\text{N}$.
Then.
\[G_{n}^{n/N}.\,A_{n}^{(N-n)/N}\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}\,\le \,\sum\limits_{i=1}^{n}{{{b}_{i/N}}}\,=\,{{A}_{n}}\]
How?
\[\begin{align}
& {{G}_{n}}\,=\,\prod\limits_{i=1}^{n}{b_{i}^{1/N}} \\
& {{G}_{N}}\,=\,\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}=\,\prod\limits_{i=1}^{n}{b_{i}^{1/n}}.\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}} \\
\end{align}\]
But from $i\,=\,n+1$ to $N\,{{b}_{1\,}}=\,{{A}_{n}}$ N for all i
So\[{{G}_{N}}\,=\,\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}=\,\prod\limits_{i=1}^{n}{b_{i}^{1/n}}.A_{n}^{\dfrac{N-n}{n}}\]
How is\[\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}\,\le \,\sum\limits_{i=1}^{N}{\dfrac{{{b}_{i}}}{N}}\,?\,\] sunoke yse if $\text{AM}\,\ge \,\text{GM}$
But\[\begin{align}
& \sum\limits_{\text{i=1}}^{\text{N}}{\dfrac{{{\text{b}}_{\text{i}}}}{\text{N}}}\,\text{=}\,\sum\limits_{\text{i=1}}^{\text{n}}{\dfrac{{{\text{b}}_{\text{i}}}}{\text{N}}}\text{+}\sum\limits_{\text{i=1}}^{\text{N}}{\dfrac{{{\text{b}}_{\text{i}}}}{\text{N}}} \\
& {{\text{b}}_{\text{i}\,}}\,\text{=}\,{{\text{A}}_{\text{n}}}\,\text{for}\,\text{all}\,\text{i}\,\text{here} \\
\end{align}\]
\[\begin{align}
& \text{=}\,\dfrac{\text{1}}{\text{N}}\,\text{ }\!\!\times\!\!\text{ n}{{\text{A}}_{\text{n}}}\,\text{+}\,\dfrac{\text{(N-n)}{{\text{A}}_{\text{n}}}}{\text{N}} \\
& \text{=}\,\dfrac{\text{N}}{\text{N}}{{\text{A}}_{\text{n}}}\,\text{=}\,{{\text{A}}_{\text{n}}} \\
\end{align}\]
So we have proved $\text{G}_{\text{n}}^{\text{n/N}}\text{A}_{\text{n}}^{\text{(N-n)/N}}\le \,{{\text{A}}_{\text{n}}}$
Cross multiply, we get
$\text{G}_{\text{n}}^{\text{n/N}}\le \text{A}_{\text{n}}^{\text{(N-n)/N}}$
Now, we know $\dfrac{\sum\limits_{i-1}^{n}{\sqrt{\dfrac{{{x}_{1}}{{x}_{2}}...{{x}_{n}}}{{{x}_{i}}n}}}}{n}\ge \,1$ (result of $\text{AM}\,\ge \,\text{GM}$
Which means$\sqrt[\text{n}]{{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}...{{\text{x}}_{\text{n}}}}\dfrac{\sum\limits_{\text{i=1}}^{\text{n}}{\dfrac{\text{1}}{{{\text{x}}_{\text{1}}}}}}{\text{n}}$
So $\sqrt[\text{n}]{{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}...{{\text{x}}_{\text{n}}}}\dfrac{\text{n}}{\sum\limits_{\text{i=1}}^{\text{n}}{\dfrac{\text{1}}{{{\text{x}}_{\text{1}}}}}}$ which means $\text{GM}\,\ge \,\text{HM}$
Complete step by step solution: First let’s try to prove that \[\text{AM}\,\ge \,\text{GM}\] for any two numbers a and b, both > 0
We know
\[\text{GM}\,\text{=}\,\sqrt{\text{ab}}\,\text{=}\,\dfrac{\sqrt{\text{a}}\sqrt{\text{b}}\text{+}\sqrt{\text{b}}\sqrt{\text{a}}}{\text{2}}\,\le \,\dfrac{\sqrt{\text{a}}\sqrt{\text{a}}\text{+}\sqrt{\text{b}}\sqrt{\text{b}}}{\text{2}}\,\text{=}\,\dfrac{\text{a+b}}{\text{2}}\]
Why is $\sqrt{\text{a}}\sqrt{\text{b}}\text{+}\sqrt{\text{b}}\sqrt{\text{a}}\,\text{}\sqrt{\text{a}}\sqrt{\text{a}}\text{+}\sqrt{\text{b}}\sqrt{\text{b}}\,\text{=}\,\text{a+b ?}$
Consider ${{\left( \sqrt{a}-\sqrt{b} \right)}^{2}}$ which we know has to be $\ge \,0$
Expanding,
$\begin{align}
& a+b-2\sqrt{ab}\,\ge \,0 \\
& \therefore \,a+b\,\ge \,2\sqrt{ab}\,=\,\sqrt{a}\sqrt{b}+\sqrt{b}\sqrt{a} \\
\end{align}$ .
Now let’s try to prove that $\text{GM}\,\ge \,\text{HM}$.
\[\text{HM}\,\text{of}\,\text{a}\,\text{and}\,\text{b}\,\text{=}\,\dfrac{\text{2ab}}{\text{a+b}}\]
Let us compute $\text{GM}-\text{HM}$
\[\begin{align}
& \text{=}\,\sqrt{\text{ab}}\,\text{=}\,\dfrac{\text{2ab}}{\text{(a+b)}} \\
& \text{=}\,\dfrac{\text{(a+b)}\sqrt{\text{ab}}\text{-2}\sqrt{\text{ab}}\text{.}\sqrt{\text{ab}}}{\text{(a+b)}} \\
& \text{=}\,\dfrac{\sqrt{\text{ab}}\text{ }\!\![\!\!\text{ a+b }\!\!]\!\!\text{ -2}\sqrt{\text{ab}}}{\text{a+b}} \\
& \text{=}\,\dfrac{\sqrt{\text{ab}}{{\left[ \sqrt{\text{a}}\text{-}\sqrt{\text{b}} \right]}^{\text{2}}}}{\text{a+b}}
\end{align}\]
Which has to be positive because a, b >0
$\therefore $ if $\begin{align}
& \text{GM}-\text{HM}\,\ge \,\text{0} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\text{GM}\,\ge \,\text{HM} \\
\end{align}$
So we get the inequality $\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}$ for two positive numbers a and b, with the equality occurring when both a and b are equal
Ideally, the solution ends right here and we can choose $\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}$ Option C as the right answer. However, for the sake of completion, we will use Cauchy induction to prove $\text{AM}\,\ge \,\text{GM}$ for any N positive numbers. $\text{AM}\,\ge \,\text{GM}$ will be a direct result of $\text{AM}\,\ge \,\text{GM}$. This will be done as an extra exercise in the note.
Note: Note: We know $\text{AM}\,\ge \,\text{GM}\,\ge \,\text{HM}$ for 2 variables. We next prove that if the inequality holds for n variables, then it holds for 2n variables.
Let it hold true for n variables. Let ${{\text{A}}_{\text{n}\,}}\text{,}{{\text{A}}_{\text{n}}}\text{,}\,{{\text{A}}_{\text{2n}}}$ denote arithmetic means of $\left( a,\,...,\,{{a}_{n}} \right)$ q\[\text{(}{{\text{a}}_{\text{n+1}}}\text{,}.....\text{,}\,{{\text{a}}_{\text{2n}}}\text{)}\,\text{,}\,\text{(}{{\text{a}}_{\text{1}}}\text{,}\,...\text{,}\,{{\text{a}}_{\text{2n}}}\text{)}\] respectively; let ${{\text{G}}_{\text{n}}}\text{,}\,{{\text{G}}_{\text{n}}}\text{,}\,{{\text{G}}_{\text{2n}}}$ denote their geometric means. Then
\[{{\text{G}}_{\text{2n}}}\,=\,\sqrt{{{\text{G}}_{\text{n}}}{{\text{G}}_{\text{n}}}}\,\le \,\dfrac{{{\text{G}}_{\text{n}}}\,\text{+}\,{{\text{G}}_{\text{n}}}}{\text{2}}\,\le \,\dfrac{{{\text{A}}_{\text{n}}}{{\text{A}}_{\text{n}}}}{\text{2}}\,=\,{{\text{A}}_{\text{2n}}}\]
Why? $\begin{align}
& {{G}_{n}}\,=\,\sqrt[n]{{{a}_{1}}.....{{a}_{n}}} \\
& {{G}_{n}}\,=\,\sqrt[n]{{{a}_{n+1}}.....{{a}_{2n}}} \\
\end{align}$ But \[\begin{align}
& {{\text{G}}_{\text{2n}}}\,\text{=}\,\sqrt[\text{2n}]{{{\text{a}}_{\text{1}}}.....{{\text{a}}_{\text{2n}}}} \\
& \text{=}\,{{\left( \,\sqrt[\text{2n}]{{{\text{a}}_{\text{1}}}.....{{\text{a}}_{\text{2n}}}}\text{.}\,\sqrt[\text{2n}]{{{\text{a}}_{\text{n+1}}}.....{{\text{a}}_{\text{2n}}}} \right)}^{{}^{\text{1}}/{}_{\text{2}}}} \\
& \text{=}\sqrt{{{\text{G}}_{\text{n}}}{{\text{G}}_{\text{n}}}} \\
\end{align}\]
Now \[\sqrt{{{\text{G}}_{\text{n}}}{{\text{G}}_{\text{n}}}\,\le \,\dfrac{{{\text{G}}_{\text{n}}}\,\text{+}\,{{\text{G}}_{\text{n}}}}{\text{2}}}\]
because $\text{AM}\,\ge \,\text{GM}$ holds for ${{\text{G}}_{\text{n}}}$ and ${{\text{G}}_{\text{n}}}$ and $\dfrac{{{\text{A}}_{\text{n}}}\text{+}{{\text{A}}_{\text{n}}}}{\text{2}}\,\ge \,\dfrac{{{\text{G}}_{\text{n}}}\text{+}{{\text{G}}_{\text{n}}}}{\text{2}}$ because ${{\text{A}}_{\text{n}}}\,\ge \,{{\text{G}}_{\text{n}}}$ and \[\text{A}{{\text{ }\!\!'\!\!\text{ }}_{\text{n}}}\,\ge \,\text{G}{{\text{ }\!\!'\!\!\text{ }}_{\text{n}}}\]
These results show by induction holds for \[\text{n}\,\text{=}\,{{\text{2}}^{\text{k}}}\] for all integers k. For every integer n, there is an N > n such that the theorem holds for N variables.
Now finally, we show that if N > n, and the theorem holds for N variables, then it holds for n variables with
$\text{AM}\,\text{=}\,{{\text{A}}_{\text{n}}}\,\text{and}\,\text{GM}\,\text{=}\,{{\text{G}}_{\text{n}}}$
Set ${{\text{b}}_{\text{k}}}\,\text{=}\,{{\text{a}}_{\text{k}}}$ for $1\,\le \,\text{k}\,\le \,\text{n}$ and let ${{\text{b}}_{\text{k}}}\,\text{=}\,{{\text{a}}_{\text{n}}}$ for $\text{n}\,\text{}\,\text{k}\le \,\text{N}$.
Then.
\[G_{n}^{n/N}.\,A_{n}^{(N-n)/N}\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}\,\le \,\sum\limits_{i=1}^{n}{{{b}_{i/N}}}\,=\,{{A}_{n}}\]
How?
\[\begin{align}
& {{G}_{n}}\,=\,\prod\limits_{i=1}^{n}{b_{i}^{1/N}} \\
& {{G}_{N}}\,=\,\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}=\,\prod\limits_{i=1}^{n}{b_{i}^{1/n}}.\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}} \\
\end{align}\]
But from $i\,=\,n+1$ to $N\,{{b}_{1\,}}=\,{{A}_{n}}$ N for all i
So\[{{G}_{N}}\,=\,\,=\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}=\,\prod\limits_{i=1}^{n}{b_{i}^{1/n}}.A_{n}^{\dfrac{N-n}{n}}\]
How is\[\,\prod\limits_{i=1}^{N}{b_{i}^{1/N}}\,\le \,\sum\limits_{i=1}^{N}{\dfrac{{{b}_{i}}}{N}}\,?\,\] sunoke yse if $\text{AM}\,\ge \,\text{GM}$
But\[\begin{align}
& \sum\limits_{\text{i=1}}^{\text{N}}{\dfrac{{{\text{b}}_{\text{i}}}}{\text{N}}}\,\text{=}\,\sum\limits_{\text{i=1}}^{\text{n}}{\dfrac{{{\text{b}}_{\text{i}}}}{\text{N}}}\text{+}\sum\limits_{\text{i=1}}^{\text{N}}{\dfrac{{{\text{b}}_{\text{i}}}}{\text{N}}} \\
& {{\text{b}}_{\text{i}\,}}\,\text{=}\,{{\text{A}}_{\text{n}}}\,\text{for}\,\text{all}\,\text{i}\,\text{here} \\
\end{align}\]
\[\begin{align}
& \text{=}\,\dfrac{\text{1}}{\text{N}}\,\text{ }\!\!\times\!\!\text{ n}{{\text{A}}_{\text{n}}}\,\text{+}\,\dfrac{\text{(N-n)}{{\text{A}}_{\text{n}}}}{\text{N}} \\
& \text{=}\,\dfrac{\text{N}}{\text{N}}{{\text{A}}_{\text{n}}}\,\text{=}\,{{\text{A}}_{\text{n}}} \\
\end{align}\]
So we have proved $\text{G}_{\text{n}}^{\text{n/N}}\text{A}_{\text{n}}^{\text{(N-n)/N}}\le \,{{\text{A}}_{\text{n}}}$
Cross multiply, we get
$\text{G}_{\text{n}}^{\text{n/N}}\le \text{A}_{\text{n}}^{\text{(N-n)/N}}$
Now, we know $\dfrac{\sum\limits_{i-1}^{n}{\sqrt{\dfrac{{{x}_{1}}{{x}_{2}}...{{x}_{n}}}{{{x}_{i}}n}}}}{n}\ge \,1$ (result of $\text{AM}\,\ge \,\text{GM}$
Which means$\sqrt[\text{n}]{{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}...{{\text{x}}_{\text{n}}}}\dfrac{\sum\limits_{\text{i=1}}^{\text{n}}{\dfrac{\text{1}}{{{\text{x}}_{\text{1}}}}}}{\text{n}}$
So $\sqrt[\text{n}]{{{\text{x}}_{\text{1}}}{{\text{x}}_{\text{2}}}...{{\text{x}}_{\text{n}}}}\dfrac{\text{n}}{\sum\limits_{\text{i=1}}^{\text{n}}{\dfrac{\text{1}}{{{\text{x}}_{\text{1}}}}}}$ which means $\text{GM}\,\ge \,\text{HM}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

