
The coordinates of two points $\text{A}$ and $\text{B}$ are $\left( 3,4 \right)$ and $\left( 5,-2 \right)$ respectively. Find the coordinates of any point $\text{P}$ if $\text{PA}=\text{PB}$ and the area of $\Delta \text{PAB}=10?$
Answer
525.9k+ views
Hint: We will use the formula $\text{A}{{\text{B}}^{2}}={{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}$ to find the squares of the line joining the points $\text{P}$ and $\text{A}$ and the line joining the points $\text{P}$ and $\text{B}\text{.}$ Then we will equate these values. Then we will use the determinant method for finding the area of a triangle.
Complete step by step answer:
Let us consider the given data. We are given with two points $\text{A}=\left( 3,4 \right)$ and $\text{B}=\left( 5,-2 \right).$ We are asked find the coordinates of the point $\text{P}$ that satisfies $\text{PA}=\text{PB}$ and the area of $\Delta \text{PAB}=10 sq.units.$
Suppose that the coordinate of the point $\text{P}$ is $\left( x,y \right).$
We also have $\text{PA}=\text{PB}\text{.}$
Let us square the whole equation to get $\text{P}{{\text{A}}^{2}}=\text{P}{{\text{B}}^{2}}.$
Now, let us find out the value of $\text{P}{{\text{A}}^{2}}$ by using the formula $\text{A}{{\text{B}}^{2}}={{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}.$
So, we will get $\text{P}{{\text{A}}^{2}}={{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}.$
In the same way, we can find the value of $\text{P}{{\text{B}}^{2}}$ by using the formula $\text{A}{{\text{B}}^{2}}={{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}.$
Now, we will get $\text{P}{{\text{B}}^{2}}={{\left( x-5 \right)}^{2}}+{{\left( y+2 \right)}^{2}}.$
Let us equate the above obtained values to get ${{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}={{\left( x-5 \right)}^{2}}+{{\left( y+2 \right)}^{2}}.$
Let us simplify the obtained equation to get ${{x}^{2}}-6x+9+{{y}^{2}}-8y+16={{x}^{2}}-10x+25+{{y}^{2}}+4y+4.$
Let us do some more simplification by adding the constant terms on the same side to get ${{x}^{2}}-6x+{{y}^{2}}-8y+25={{x}^{2}}-10x+{{y}^{2}}+4y+29.$
Let us transpose the terms including $x$ to the LHS and the terms including $y$ to the RHS. Also, transpose the constant term from the LHS to the RHS to get \[{{x}^{2}}-6x-{{x}^{2}}+10x={{y}^{2}}+4y-{{y}^{2}}+8y+29-25.\]
Now, further simplification will give us \[4x=12y+4.\]
We have eliminated the similar terms having the opposite signs.
Now, let us transpose $12y$ from the RHS to the LHS to get $4x-12y=4.$
In the next step, we divide the whole equation to get $x-3y=1.......\left( 1 \right).$
It is given that the area of $\Delta \text{PAB}=10 sq.units.$
Therefore, we will get $\dfrac{1}{2}\left| \begin{align}
& \begin{matrix}
x & y & 1 \\
\end{matrix} \\
& \begin{matrix}
3 & 4 & 1 \\
\end{matrix} \\
& \begin{matrix}
5 & -2 & 1 \\
\end{matrix} \\
\end{align} \right|=\pm 10.$
Now, we transpose $2$ to the RHS and find the determinant to get $x\left( 4+2 \right)-y\left( 3-5 \right)+1\left( -6-20 \right)=\pm 20.$
Let us open the bracket to get $6x+2y-26=\pm 20.$
Let us divide the whole equation by $2,$ $3x+y-13=\pm 10.$
We transpose $13$ from the LHS to the RHS, $3x+y=\pm 10+13.$
Therefore, $3x+y=10+13=23.......\left( 2 \right)$ or $3x+y=-10+13=3.......\left( 3 \right)$
Let us multiply the equation $\left( 1 \right)$ with $3, 3x-9y=3$ and subtract it from the equation $\left( 2 \right)$ to get $10y=20$ and then we will get $y=\dfrac{20}{10}=2$ which when applied to the equation $\left( 1 \right)$ will give $x-3\times 2=x-6=1.$ That is, $x=1+6=7.$
Let us multiply the equation $\left( 1 \right)$ with $3, 3x-9y=3$ and subtract it from the equation $\left( 3 \right)$ to get $10y=0$ which implies $y=0$ and thus from the equation $\left( 1 \right),$ we will get $x-0=x=1.$
Hence the coordinates of $\text{P}$ are $\left( 7,2 \right)$ or $\left( 1,0 \right).$
Note: Remember that the area of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given by the determinant $\dfrac{1}{2}\left| \begin{align}
& \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{x}_{2}} & {{y}_{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \\
\end{align} \right|.$ The obtained coordinates satisfy $\text{PA}=\text{PB}.$ Consider \[\left( 7,2 \right): \text{PA}=\sqrt{{{\left( 7-3 \right)}^{2}}+{{\left( 2-4 \right)}^{2}}}=\sqrt{{{4}^{2}}+{{\left( -2 \right)}^{2}}}=\sqrt{20}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{{{\left( 7-5 \right)}^{2}}+{{\left( 2-\left( -2 \right) \right)}^{2}}}=\text{PB}\text{.}\]
Similarly, \[\left( 1,0 \right): \text{PA}=\sqrt{{{\left( 1-3 \right)}^{2}}+{{\left( 0-4 \right)}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}}=\sqrt{20}=\sqrt{{{\left( -4 \right)}^{2}}+{{2}^{2}}}=\sqrt{{{\left( 1-5 \right)}^{2}}+{{\left( 0-\left( -2 \right) \right)}^{2}}}=\text{PB}\text{.}\]
Complete step by step answer:
Let us consider the given data. We are given with two points $\text{A}=\left( 3,4 \right)$ and $\text{B}=\left( 5,-2 \right).$ We are asked find the coordinates of the point $\text{P}$ that satisfies $\text{PA}=\text{PB}$ and the area of $\Delta \text{PAB}=10 sq.units.$
Suppose that the coordinate of the point $\text{P}$ is $\left( x,y \right).$
We also have $\text{PA}=\text{PB}\text{.}$
Let us square the whole equation to get $\text{P}{{\text{A}}^{2}}=\text{P}{{\text{B}}^{2}}.$
Now, let us find out the value of $\text{P}{{\text{A}}^{2}}$ by using the formula $\text{A}{{\text{B}}^{2}}={{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}.$
So, we will get $\text{P}{{\text{A}}^{2}}={{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}.$
In the same way, we can find the value of $\text{P}{{\text{B}}^{2}}$ by using the formula $\text{A}{{\text{B}}^{2}}={{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}.$
Now, we will get $\text{P}{{\text{B}}^{2}}={{\left( x-5 \right)}^{2}}+{{\left( y+2 \right)}^{2}}.$
Let us equate the above obtained values to get ${{\left( x-3 \right)}^{2}}+{{\left( y-4 \right)}^{2}}={{\left( x-5 \right)}^{2}}+{{\left( y+2 \right)}^{2}}.$
Let us simplify the obtained equation to get ${{x}^{2}}-6x+9+{{y}^{2}}-8y+16={{x}^{2}}-10x+25+{{y}^{2}}+4y+4.$
Let us do some more simplification by adding the constant terms on the same side to get ${{x}^{2}}-6x+{{y}^{2}}-8y+25={{x}^{2}}-10x+{{y}^{2}}+4y+29.$
Let us transpose the terms including $x$ to the LHS and the terms including $y$ to the RHS. Also, transpose the constant term from the LHS to the RHS to get \[{{x}^{2}}-6x-{{x}^{2}}+10x={{y}^{2}}+4y-{{y}^{2}}+8y+29-25.\]
Now, further simplification will give us \[4x=12y+4.\]
We have eliminated the similar terms having the opposite signs.
Now, let us transpose $12y$ from the RHS to the LHS to get $4x-12y=4.$
In the next step, we divide the whole equation to get $x-3y=1.......\left( 1 \right).$
It is given that the area of $\Delta \text{PAB}=10 sq.units.$
Therefore, we will get $\dfrac{1}{2}\left| \begin{align}
& \begin{matrix}
x & y & 1 \\
\end{matrix} \\
& \begin{matrix}
3 & 4 & 1 \\
\end{matrix} \\
& \begin{matrix}
5 & -2 & 1 \\
\end{matrix} \\
\end{align} \right|=\pm 10.$
Now, we transpose $2$ to the RHS and find the determinant to get $x\left( 4+2 \right)-y\left( 3-5 \right)+1\left( -6-20 \right)=\pm 20.$
Let us open the bracket to get $6x+2y-26=\pm 20.$
Let us divide the whole equation by $2,$ $3x+y-13=\pm 10.$
We transpose $13$ from the LHS to the RHS, $3x+y=\pm 10+13.$
Therefore, $3x+y=10+13=23.......\left( 2 \right)$ or $3x+y=-10+13=3.......\left( 3 \right)$
Let us multiply the equation $\left( 1 \right)$ with $3, 3x-9y=3$ and subtract it from the equation $\left( 2 \right)$ to get $10y=20$ and then we will get $y=\dfrac{20}{10}=2$ which when applied to the equation $\left( 1 \right)$ will give $x-3\times 2=x-6=1.$ That is, $x=1+6=7.$
Let us multiply the equation $\left( 1 \right)$ with $3, 3x-9y=3$ and subtract it from the equation $\left( 3 \right)$ to get $10y=0$ which implies $y=0$ and thus from the equation $\left( 1 \right),$ we will get $x-0=x=1.$
Hence the coordinates of $\text{P}$ are $\left( 7,2 \right)$ or $\left( 1,0 \right).$
Note: Remember that the area of a triangle with vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$ is given by the determinant $\dfrac{1}{2}\left| \begin{align}
& \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{x}_{2}} & {{y}_{2}} & 1 \\
\end{matrix} \\
& \begin{matrix}
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \\
\end{align} \right|.$ The obtained coordinates satisfy $\text{PA}=\text{PB}.$ Consider \[\left( 7,2 \right): \text{PA}=\sqrt{{{\left( 7-3 \right)}^{2}}+{{\left( 2-4 \right)}^{2}}}=\sqrt{{{4}^{2}}+{{\left( -2 \right)}^{2}}}=\sqrt{20}=\sqrt{{{2}^{2}}+{{4}^{2}}}=\sqrt{{{\left( 7-5 \right)}^{2}}+{{\left( 2-\left( -2 \right) \right)}^{2}}}=\text{PB}\text{.}\]
Similarly, \[\left( 1,0 \right): \text{PA}=\sqrt{{{\left( 1-3 \right)}^{2}}+{{\left( 0-4 \right)}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -4 \right)}^{2}}}=\sqrt{20}=\sqrt{{{\left( -4 \right)}^{2}}+{{2}^{2}}}=\sqrt{{{\left( 1-5 \right)}^{2}}+{{\left( 0-\left( -2 \right) \right)}^{2}}}=\text{PB}\text{.}\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

