
The coordinates of the incentre of the triangle having sides $3x - 4y = 0$, $5x + 12y = 0$ and $y - 15 = 0$ are
A) $\left( { - 1,8} \right)$
B) $\left( {1, - 8} \right)$
C) $\left( {2,6} \right)$
D) None of these
Answer
493.5k+ views
Hint: First we are to find the points of intersection of the three lines given in order to find the coordinates of the sides of the triangle. Then we can find the distance of the sides of the triangle. Further by using the formula of the incentre of a triangle, that is,
Incentre $ = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)$
Where, $a$ is the length of the side opposite to $\left( {{x_1},{y_1}} \right)$
$b$ is the length of the side opposite to $\left( {{x_2},{y_2}} \right)$
$c$ is the length of the side opposite to $\left( {{x_3},{y_3}} \right)$.
Complete step by step answer:
The given lines are,
$3x - 4y = 0 - - - \left( 1 \right)$
$5x + 12y = 0 - - - \left( 2 \right)$
$y - 15 = 0 - - - \left( 3 \right)$
So, in triangle $ABC$, the equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ represents the sides $AB,BC,CA$, respectively.
Now, solving $\left( 1 \right)$ and $\left( 2 \right)$, we get the point $B$.
So, $\left( 1 \right) \times 3 + \left( 2 \right)$ gives,
$3\left( {3x - 4y} \right) + \left( {5x + 12y} \right) = 0$
$ \Rightarrow 9x - 12y + 5x + 12y = 0$
Now, simplifying, we get,
$ \Rightarrow 14x = 0$
$ \Rightarrow x = 0$
Substituting this in $\left( 1 \right)$, we get,
$3\left( 0 \right) - 4y = 0$
$ \Rightarrow 0 - 4y = 0$
$ \Rightarrow 4y = 0$
$ \Rightarrow y = 0$
Therefore, $x = 0,y = 0$.
Hence, the point $B\left( {0,0} \right)$.
Now, solving $\left( 2 \right)$ and $\left( 3 \right)$, we get the point $C$.
From $\left( 3 \right)$, we get,
$y = 15$
Substituting this value in $\left( 2 \right)$, we get,
$5x + 12\left( {15} \right) = 0$
$ \Rightarrow 5x + 180 = 0$
Now, subtracting both sides by $180$, we get,
$ \Rightarrow 5x = - 180$
Dividing both sides by $5$, we get,
$ \Rightarrow x = - 36$
Therefore, we get, $x = - 36,y = 15$.
Hence, the point $C\left( { - 36,15} \right)$.
Now, solving $\left( 1 \right)$ and $\left( 3 \right)$, we get the point $A$.
From $\left( 3 \right)$, we get,
$y = 15$
Substituting this value in $\left( 1 \right)$, we get,
$3x - 4\left( {15} \right) = 0$
$ \Rightarrow 3x - 60 = 0$
Now, adding $60$ to both sides, we get,
$ \Rightarrow 3x = 60$
Now, dividing both sides by $3$, we get,
$ \Rightarrow x = 20$
Therefore, we get, $x = 20,y = 15$.
Hence, the point $A\left( {20,15} \right)$.
Therefore the points of the triangle $ABC$ are $A\left( {20,15} \right)$, $B\left( {0,0} \right)$, $C\left( { - 36,15} \right)$.
Now, by using the distance formula we can find the distance between the points.
Therefore, the distance formula is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Now, using this formula, we get,
$AB = c = \sqrt {{{\left( {0 - 20} \right)}^2} + {{\left( {0 - 15} \right)}^2}} $
$ \Rightarrow c = \sqrt {{{\left( { - 20} \right)}^2} + {{\left( { - 15} \right)}^2}} $
\[ \Rightarrow c = \sqrt {400 + 225} \]
Now, simplifying the square root, we get,
$ \Rightarrow AB = c = \sqrt {625} = 25$
And, $BC = a = \sqrt {{{\left( { - 36 - 0} \right)}^2} + {{\left( {15 - 0} \right)}^2}} $
$ \Rightarrow a = \sqrt {{{\left( { - 36} \right)}^2} + {{\left( {15} \right)}^2}} $
\[ \Rightarrow a = \sqrt {1296 + 225} \]
Now, simplifying the square root, we get,
$ \Rightarrow BC = a = \sqrt {1521} = 39$
Again, $AC = b = \sqrt {{{\left( { - 36 - 20} \right)}^2} + {{\left( {15 - 15} \right)}^2}} $
$ \Rightarrow b = \sqrt {{{\left( { - 56} \right)}^2} + {{\left( 0 \right)}^2}} $
\[ \Rightarrow b = \sqrt {3136 + 0} \]
Now, simplifying the square root, we get,
$ \Rightarrow AC = b = \sqrt {3136} = 56$
Therefore, $AB = c = 25,BC = a = 39,AC = b = 56$.
And, the points are, $A\left( {{x_1},{y_1}} \right) = \left( {20,15} \right)$, $B\left( {{x_2},{y_2}} \right) = \left( {0,0} \right)$, $C\left( {{x_3},{y_3}} \right) = \left( { - 36,15} \right)$.
Now, using the formula of the incentre of a triangle, we get,
Incentre $ = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)$
Now, substituting the values, we get,
Incentre $ = \left( {\dfrac{{39\left( {20} \right) + 56\left( 0 \right) + 25\left( { - 36} \right)}}{{39 + 56 + 25}},\dfrac{{39\left( {15} \right) + 56\left( 0 \right) + 25\left( {15} \right)}}{{39 + 56 + 25}}} \right)$
Now, simplifying, we get,
$ = \left( {\dfrac{{780 + 0 - 900}}{{120}},\dfrac{{585 + 0 + 375}}{{120}}} \right)$
\[ = \left( {\dfrac{{ - 120}}{{120}},\dfrac{{960}}{{120}}} \right)\]
Now, diving the terms, we get,
Incentre $ = \left( { - 1,8} \right)$
Therefore, the coordinates of the incentre of the triangle are $\left( { - 1,8} \right)$, the correct option is (A).
Note:
The incentre of a triangle is the point inside the triangle where the angle bisectors of the three angles meet inside the triangle. Together with the centroid, circumcentre and orthocentre, it is one of the four triangle centres known to the ancient Greeks. Care should be taken while carrying out the calculations so as to be sure of the final answer.
Incentre $ = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)$
Where, $a$ is the length of the side opposite to $\left( {{x_1},{y_1}} \right)$
$b$ is the length of the side opposite to $\left( {{x_2},{y_2}} \right)$
$c$ is the length of the side opposite to $\left( {{x_3},{y_3}} \right)$.
Complete step by step answer:
The given lines are,
$3x - 4y = 0 - - - \left( 1 \right)$
$5x + 12y = 0 - - - \left( 2 \right)$
$y - 15 = 0 - - - \left( 3 \right)$
So, in triangle $ABC$, the equations $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ represents the sides $AB,BC,CA$, respectively.
Now, solving $\left( 1 \right)$ and $\left( 2 \right)$, we get the point $B$.
So, $\left( 1 \right) \times 3 + \left( 2 \right)$ gives,
$3\left( {3x - 4y} \right) + \left( {5x + 12y} \right) = 0$
$ \Rightarrow 9x - 12y + 5x + 12y = 0$
Now, simplifying, we get,
$ \Rightarrow 14x = 0$
$ \Rightarrow x = 0$
Substituting this in $\left( 1 \right)$, we get,
$3\left( 0 \right) - 4y = 0$
$ \Rightarrow 0 - 4y = 0$
$ \Rightarrow 4y = 0$
$ \Rightarrow y = 0$
Therefore, $x = 0,y = 0$.
Hence, the point $B\left( {0,0} \right)$.
Now, solving $\left( 2 \right)$ and $\left( 3 \right)$, we get the point $C$.
From $\left( 3 \right)$, we get,
$y = 15$
Substituting this value in $\left( 2 \right)$, we get,
$5x + 12\left( {15} \right) = 0$
$ \Rightarrow 5x + 180 = 0$
Now, subtracting both sides by $180$, we get,
$ \Rightarrow 5x = - 180$
Dividing both sides by $5$, we get,
$ \Rightarrow x = - 36$
Therefore, we get, $x = - 36,y = 15$.
Hence, the point $C\left( { - 36,15} \right)$.
Now, solving $\left( 1 \right)$ and $\left( 3 \right)$, we get the point $A$.
From $\left( 3 \right)$, we get,
$y = 15$
Substituting this value in $\left( 1 \right)$, we get,
$3x - 4\left( {15} \right) = 0$
$ \Rightarrow 3x - 60 = 0$
Now, adding $60$ to both sides, we get,
$ \Rightarrow 3x = 60$
Now, dividing both sides by $3$, we get,
$ \Rightarrow x = 20$
Therefore, we get, $x = 20,y = 15$.
Hence, the point $A\left( {20,15} \right)$.
Therefore the points of the triangle $ABC$ are $A\left( {20,15} \right)$, $B\left( {0,0} \right)$, $C\left( { - 36,15} \right)$.
Now, by using the distance formula we can find the distance between the points.
Therefore, the distance formula is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Now, using this formula, we get,
$AB = c = \sqrt {{{\left( {0 - 20} \right)}^2} + {{\left( {0 - 15} \right)}^2}} $
$ \Rightarrow c = \sqrt {{{\left( { - 20} \right)}^2} + {{\left( { - 15} \right)}^2}} $
\[ \Rightarrow c = \sqrt {400 + 225} \]
Now, simplifying the square root, we get,
$ \Rightarrow AB = c = \sqrt {625} = 25$
And, $BC = a = \sqrt {{{\left( { - 36 - 0} \right)}^2} + {{\left( {15 - 0} \right)}^2}} $
$ \Rightarrow a = \sqrt {{{\left( { - 36} \right)}^2} + {{\left( {15} \right)}^2}} $
\[ \Rightarrow a = \sqrt {1296 + 225} \]
Now, simplifying the square root, we get,
$ \Rightarrow BC = a = \sqrt {1521} = 39$
Again, $AC = b = \sqrt {{{\left( { - 36 - 20} \right)}^2} + {{\left( {15 - 15} \right)}^2}} $
$ \Rightarrow b = \sqrt {{{\left( { - 56} \right)}^2} + {{\left( 0 \right)}^2}} $
\[ \Rightarrow b = \sqrt {3136 + 0} \]
Now, simplifying the square root, we get,
$ \Rightarrow AC = b = \sqrt {3136} = 56$
Therefore, $AB = c = 25,BC = a = 39,AC = b = 56$.
And, the points are, $A\left( {{x_1},{y_1}} \right) = \left( {20,15} \right)$, $B\left( {{x_2},{y_2}} \right) = \left( {0,0} \right)$, $C\left( {{x_3},{y_3}} \right) = \left( { - 36,15} \right)$.
Now, using the formula of the incentre of a triangle, we get,
Incentre $ = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)$
Now, substituting the values, we get,
Incentre $ = \left( {\dfrac{{39\left( {20} \right) + 56\left( 0 \right) + 25\left( { - 36} \right)}}{{39 + 56 + 25}},\dfrac{{39\left( {15} \right) + 56\left( 0 \right) + 25\left( {15} \right)}}{{39 + 56 + 25}}} \right)$
Now, simplifying, we get,
$ = \left( {\dfrac{{780 + 0 - 900}}{{120}},\dfrac{{585 + 0 + 375}}{{120}}} \right)$
\[ = \left( {\dfrac{{ - 120}}{{120}},\dfrac{{960}}{{120}}} \right)\]
Now, diving the terms, we get,
Incentre $ = \left( { - 1,8} \right)$
Therefore, the coordinates of the incentre of the triangle are $\left( { - 1,8} \right)$, the correct option is (A).
Note:
The incentre of a triangle is the point inside the triangle where the angle bisectors of the three angles meet inside the triangle. Together with the centroid, circumcentre and orthocentre, it is one of the four triangle centres known to the ancient Greeks. Care should be taken while carrying out the calculations so as to be sure of the final answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

