
The coordinates of the foot of perpendicular drawn from the point $A\left( {1,8,4} \right)$ to the line joining the points $B\left( {0, - 1,3} \right)$ and $C\left( {2, - 3, - 1} \right)$
A.$\left( {\dfrac{{ - 5}}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right)$
B.$\left( {\dfrac{5}{3},\dfrac{1}{3},\dfrac{{16}}{3}} \right)$
C.$\left( {\dfrac{2}{3},\dfrac{{19}}{3},\dfrac{{16}}{3}} \right)$
D.$\left( {1,2,3} \right)$
Answer
597.3k+ views
Hint: First, find the equation of the lines joining the points, $B\left( {0, - 1,3} \right)$ and $C\left( {2, - 3, - 1} \right)$. Then write the direction ratios of the line $BC$. Now, find the coordinates of any general point on line $BC$ using a variable say, $\lambda $. Write the direction ratios of the perpendicular drawn from $A\left( {1,8,4} \right)$ to line $BC$. Take the dot product of direction ratios equal to 0 to find the value of $\lambda $ for the foot of perpendicular. Substitute the value of $\lambda $ in the general point of $BC$ to find the coordinates of the foot of perpendicular.
Complete step-by-step answer:
Let $D$ be the foot of perpendicular from the point $A\left( {1,8,4} \right)$ to the line joining the points $B\left( {0, - 1,3} \right)$ and $C\left( {2, - 3, - 1} \right)$
First of all, draw the diagram corresponding to the given question.
We can find the equation of line from two points. If $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ are two points on the line, then the equation of line is $\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}$.
Then equation of line $BC$ is,
$
\dfrac{{x - 0}}{{2 - 0}} = \dfrac{{y - \left( { - 1} \right)}}{{ - 3 - \left( { - 1} \right)}} = \dfrac{{z - 3}}{{\left( { - 1} \right) - 3}} \\
\Rightarrow \dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z - 3}}{{ - 4}} \\
$
The direction ratio of $BC$ is $\left\langle {2, - 2, - 4} \right\rangle $
Equate the equation of $BC$ to some variable, say $\lambda $
So, let $\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z - 3}}{{ - 4}} = \lambda $
Then, general point on line $BC$ is given by,
$
\dfrac{x}{2} = \lambda ,\dfrac{{y + 1}}{{ - 2}} = \lambda ,\dfrac{{z - 3}}{{ - 4}} = \lambda \\
x = 2\lambda ,y = - 2\lambda - 1,z = - 4\lambda + 3 \\
D = \left( {2\lambda , - 2\lambda - 1, - 4\lambda + 3} \right) \\
$
Find the direction ratios of $AD$.
$\left\langle {2\lambda - 1, - 2\lambda - 1 - 8, - 4\lambda + 3 - 4} \right\rangle = \left\langle {2\lambda - 1, - 2\lambda - 9, - 4\lambda - 1} \right\rangle $
As we know, $BC \bot AD$ , the dot product of direction ratios will be equal to 0.
$
\left\langle {2, - 2, - 4} \right\rangle .\left\langle {2\lambda - 1, - 2\lambda - 9, - 4\lambda - 1} \right\rangle = 0 \\
\Rightarrow 2\left( {2\lambda - 1} \right) - 2\left( { - 2\lambda - 9} \right) - 4\left( { - 4\lambda - 1} \right) = 0 \\
\Rightarrow 4\lambda - 2 + 4\lambda + 18 + 16\lambda + 4 = 0 \\
\Rightarrow 24\lambda + 20 = 0 \\
\Rightarrow \lambda = - \dfrac{{20}}{{24}} \\
\Rightarrow \lambda = - \dfrac{5}{6} \\
$
On substituting the value of $\lambda = - \dfrac{5}{6}$ in the general point of $D\left( {2\lambda , - 2\lambda - 1, - 4\lambda + 3} \right)$ , we get,
$
\left( {2\left( { - \dfrac{5}{6}} \right), - 2\left( { - \dfrac{5}{6}} \right) - 1, - 4\left( { - \dfrac{5}{6}} \right) + 3} \right) \\
= \left( { - \dfrac{5}{3},\dfrac{5}{3} - 1,\dfrac{{10}}{3} + 3} \right) \\
= \left( { - \dfrac{5}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right) \\
$
Thus, the coordinates of foot of perpendicular are $\left( {\dfrac{{ - 5}}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right)$.
Hence, option A is the correct option.
Note: If $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ are two points on the line, then the equation of line is $\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}$. The dot product of direction ratios of two perpendicular lines is always zero. Also, the direction ratios of two parallel lines are the same.
Complete step-by-step answer:
Let $D$ be the foot of perpendicular from the point $A\left( {1,8,4} \right)$ to the line joining the points $B\left( {0, - 1,3} \right)$ and $C\left( {2, - 3, - 1} \right)$
First of all, draw the diagram corresponding to the given question.
We can find the equation of line from two points. If $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ are two points on the line, then the equation of line is $\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}$.
Then equation of line $BC$ is,
$
\dfrac{{x - 0}}{{2 - 0}} = \dfrac{{y - \left( { - 1} \right)}}{{ - 3 - \left( { - 1} \right)}} = \dfrac{{z - 3}}{{\left( { - 1} \right) - 3}} \\
\Rightarrow \dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z - 3}}{{ - 4}} \\
$
The direction ratio of $BC$ is $\left\langle {2, - 2, - 4} \right\rangle $
Equate the equation of $BC$ to some variable, say $\lambda $
So, let $\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z - 3}}{{ - 4}} = \lambda $
Then, general point on line $BC$ is given by,
$
\dfrac{x}{2} = \lambda ,\dfrac{{y + 1}}{{ - 2}} = \lambda ,\dfrac{{z - 3}}{{ - 4}} = \lambda \\
x = 2\lambda ,y = - 2\lambda - 1,z = - 4\lambda + 3 \\
D = \left( {2\lambda , - 2\lambda - 1, - 4\lambda + 3} \right) \\
$
Find the direction ratios of $AD$.
$\left\langle {2\lambda - 1, - 2\lambda - 1 - 8, - 4\lambda + 3 - 4} \right\rangle = \left\langle {2\lambda - 1, - 2\lambda - 9, - 4\lambda - 1} \right\rangle $
As we know, $BC \bot AD$ , the dot product of direction ratios will be equal to 0.
$
\left\langle {2, - 2, - 4} \right\rangle .\left\langle {2\lambda - 1, - 2\lambda - 9, - 4\lambda - 1} \right\rangle = 0 \\
\Rightarrow 2\left( {2\lambda - 1} \right) - 2\left( { - 2\lambda - 9} \right) - 4\left( { - 4\lambda - 1} \right) = 0 \\
\Rightarrow 4\lambda - 2 + 4\lambda + 18 + 16\lambda + 4 = 0 \\
\Rightarrow 24\lambda + 20 = 0 \\
\Rightarrow \lambda = - \dfrac{{20}}{{24}} \\
\Rightarrow \lambda = - \dfrac{5}{6} \\
$
On substituting the value of $\lambda = - \dfrac{5}{6}$ in the general point of $D\left( {2\lambda , - 2\lambda - 1, - 4\lambda + 3} \right)$ , we get,
$
\left( {2\left( { - \dfrac{5}{6}} \right), - 2\left( { - \dfrac{5}{6}} \right) - 1, - 4\left( { - \dfrac{5}{6}} \right) + 3} \right) \\
= \left( { - \dfrac{5}{3},\dfrac{5}{3} - 1,\dfrac{{10}}{3} + 3} \right) \\
= \left( { - \dfrac{5}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right) \\
$
Thus, the coordinates of foot of perpendicular are $\left( {\dfrac{{ - 5}}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right)$.
Hence, option A is the correct option.
Note: If $\left( {{x_1},{y_1},{z_1}} \right)$ and $\left( {{x_2},{y_2},{z_2}} \right)$ are two points on the line, then the equation of line is $\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}$. The dot product of direction ratios of two perpendicular lines is always zero. Also, the direction ratios of two parallel lines are the same.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

