
The coordinates of A, B, C are \[\left( {6,3} \right),\left( { - 3,5} \right),\left( {4, - 2} \right)\]respectively and P is any point \[\left( {x,y} \right)\]. Show that the ratio of area of ∆PBC to that of ∆ABC is \[\dfrac{{\left| {x + y - 2} \right|}}{7}\].
Answer
570.9k+ views
Hint: Here we are given coordinates of vertices of ∆ABC along with coordinates of point P. Since we are not given the height of the triangle we will use the formula given below to find the area of both the triangles.
Formula used:
Area of the triangle with coordinates \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right),\left( {{x_3},{y_3}} \right)\] is given by,
\[ \Rightarrow \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|\]
Complete step-by-step answer:
For ∆ABC, coordinates are A \[\left( {{x_1},{y_1}} \right)\]=\[\left( {6,3} \right)\] , B \[\left( {{x_2},{y_2}} \right)\]=\[\left( { - 3,5} \right)\] , C \[\left( {{x_3},{y_3}} \right)\]=\[\left( {4, - 2} \right)\].
Area of ∆ABC \[ \Rightarrow \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|\]
Substituting the values
\[
\Rightarrow \dfrac{1}{2}\left| {6\left( {5 - \left( { - 2} \right)} \right) + ( - 3)\left( { - 2 - 3} \right) + 4\left( {3 - 5} \right)} \right| \\
\Rightarrow \dfrac{1}{2}\left| {6 \times 7 + ( - 3)( - 5) + 4 \times ( - 2)} \right| \\
\Rightarrow \dfrac{1}{2}\left| {42 + 15 - 8} \right| \\
\Rightarrow \dfrac{1}{2}\left| {49} \right| \\
\]
\[ \Rightarrow \dfrac{{49}}{2}\]
For ∆PBC, coordinates are \[P\left( {x,y} \right) = \left( {{x_1},{y_1}} \right)\], \[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right),C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\]
Area of ∆PBC \[ \Rightarrow \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|\]
Substituting the values
\[
\Rightarrow \dfrac{1}{2}\left| {x\left( {5 - \left( { - 2} \right)} \right) + ( - 3)\left( { - 2 - y} \right) + 4\left( {y - 5} \right)} \right| \\
\Rightarrow \dfrac{1}{2}\left| {7x + 6 + 3y + 4y - 20} \right| \\
\Rightarrow \dfrac{1}{2}\left| {7x + 7y - 14} \right| \\
\]
Taking 7 common
\[ \Rightarrow \dfrac{7}{2}\left| {x + y - 2} \right|\]
Now we have to take ratio of area of ∆PBC to ∆ABC
\[
\Rightarrow \dfrac{{Area\left( {\vartriangle PBC} \right)}}{{Area\left( {\vartriangle ABC} \right)}} \\
\Rightarrow \dfrac{{\dfrac{7}{2}\left| {x + y - 2} \right|}}{{\dfrac{{49}}{2}}} \\
\Rightarrow \dfrac{{\left| {x + y - 2} \right|}}{7} \\
\]
This is the ratio so obtained.
Hence proved.
Note: Don’t use any other formula to find the area here because we are given the coordinates only. Also find the values of modulus. Take the correct ratio of areas of triangles. Carefully add and subtract the signs.
Formula used:
Area of the triangle with coordinates \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right),\left( {{x_3},{y_3}} \right)\] is given by,
\[ \Rightarrow \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|\]
Complete step-by-step answer:
For ∆ABC, coordinates are A \[\left( {{x_1},{y_1}} \right)\]=\[\left( {6,3} \right)\] , B \[\left( {{x_2},{y_2}} \right)\]=\[\left( { - 3,5} \right)\] , C \[\left( {{x_3},{y_3}} \right)\]=\[\left( {4, - 2} \right)\].
Area of ∆ABC \[ \Rightarrow \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|\]
Substituting the values
\[
\Rightarrow \dfrac{1}{2}\left| {6\left( {5 - \left( { - 2} \right)} \right) + ( - 3)\left( { - 2 - 3} \right) + 4\left( {3 - 5} \right)} \right| \\
\Rightarrow \dfrac{1}{2}\left| {6 \times 7 + ( - 3)( - 5) + 4 \times ( - 2)} \right| \\
\Rightarrow \dfrac{1}{2}\left| {42 + 15 - 8} \right| \\
\Rightarrow \dfrac{1}{2}\left| {49} \right| \\
\]
\[ \Rightarrow \dfrac{{49}}{2}\]
For ∆PBC, coordinates are \[P\left( {x,y} \right) = \left( {{x_1},{y_1}} \right)\], \[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right),C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\]
Area of ∆PBC \[ \Rightarrow \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|\]
Substituting the values
\[
\Rightarrow \dfrac{1}{2}\left| {x\left( {5 - \left( { - 2} \right)} \right) + ( - 3)\left( { - 2 - y} \right) + 4\left( {y - 5} \right)} \right| \\
\Rightarrow \dfrac{1}{2}\left| {7x + 6 + 3y + 4y - 20} \right| \\
\Rightarrow \dfrac{1}{2}\left| {7x + 7y - 14} \right| \\
\]
Taking 7 common
\[ \Rightarrow \dfrac{7}{2}\left| {x + y - 2} \right|\]
Now we have to take ratio of area of ∆PBC to ∆ABC
\[
\Rightarrow \dfrac{{Area\left( {\vartriangle PBC} \right)}}{{Area\left( {\vartriangle ABC} \right)}} \\
\Rightarrow \dfrac{{\dfrac{7}{2}\left| {x + y - 2} \right|}}{{\dfrac{{49}}{2}}} \\
\Rightarrow \dfrac{{\left| {x + y - 2} \right|}}{7} \\
\]
This is the ratio so obtained.
Hence proved.
Note: Don’t use any other formula to find the area here because we are given the coordinates only. Also find the values of modulus. Take the correct ratio of areas of triangles. Carefully add and subtract the signs.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

