
The coordinates of A, B, C are \[(6,3),( - 3,5),(4, - 2)\], respectively, and P is any point \[(x,y)\]. Show that the ratio of the area of \[\Delta PBC\]to that of\[\Delta ABC\] is \[\dfrac{{(x + y - 2)}}{7}\].
Answer
572.7k+ views
Hint: As all the three coordinates of triangle is known so to calculate the area of both the triangles, we use determinant method as \[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]and hence, take the ratios of both the triangles it will be our required answer.
Complete step-by-step answer:
As the coordinates of \[\Delta ABC\]are \[A\left( {{x_1},{y_1}} \right) = \left( {6,3} \right)\],\[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right)\]and \[C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\].
To, calculate the area of both the triangles we use determinant method as \[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]
So calculating the area of \[\Delta ABC\], we substitute the values \[A\left( {{x_1},{y_1}} \right) = \left( {6,3} \right)\],\[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right)\]and \[C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\]in the above formula, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
6&3&1 \\
{ - 3}&5&1 \\
4&{ - 2}&1
\end{array}} \right|} \right|\]
On expanding the determinant, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left( {6\left( {5 + 2} \right) - 3\left( { - 3 - 4} \right) + 1\left( {6 - 20} \right)} \right)} \right|\]
On simplifying further, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left( {42 + 21 - 14} \right)} \right|\]
On solving the bracket, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left( {49} \right)} \right|\]
Hence, the area of \[\Delta ABC = \dfrac{{49}}{2}\].
Now, calculating the area of \[\Delta PBC\]using the determinant method as,
\[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]
On substituting the values of P\[(x,y)\],\[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right)\]and \[C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\], we get,
\[ \Rightarrow \]\[\Delta PBC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
x&y&1 \\
{ - 3}&5&1 \\
4&{ - 2}&1
\end{array}} \right|} \right|\]
On expanding the above determinant, we get,
\[ \Rightarrow \]\[\Delta PBC = \left| {\dfrac{1}{2}\left( {x\left( {5 + 2} \right) - y\left( { - 3 - 4} \right) + 1\left( {6 - 20} \right)} \right)} \right|\]
On simplifying further, we get,
\[ \Rightarrow \]\[\Delta PBC = \left| {\dfrac{1}{2}\left( {7x + 7y - 14} \right)} \right|\]
\[ \Rightarrow \]\[\Delta PBC = \dfrac{{7x + 7y - 14}}{2}\]
Hence, as we have to find the ratio of area of \[\dfrac{{\Delta PBC}}{{\Delta ABC}}\]
Hence, on putting the above calculated value we can simplify as,
\[\dfrac{{\Delta PBC}}{{\Delta ABC}} = \dfrac{{\dfrac{{7x + 7y - 14}}{2}}}{{\dfrac{1}{2}\left( {49} \right)}}\]
Hence, on cancelling the common terms out, we get,
\[ = \dfrac{{7x + 7y - 14}}{{\left( {49} \right)}}\]
Now, take 7 common from numerator,
\[ = \dfrac{{7(x + y - 2)}}{{\left( {49} \right)}}\]
Cancel \[7\]from both numerator and denominator,
\[\dfrac{{\Delta PBC}}{{\Delta ABC}} = \dfrac{{(x + y - 2)}}{7}\]
Hence proved.
Note: Remember the concept to calculate the area of triangle using determinant method as \[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]. Hence, expand the determinant carefully and then finally take their ratios.
Area of Triangle Formula Using Determinants
Since the area is a positive quantity, we always take the absolute value of the determinant in (1).
If the area is given, use both positive and negative values of the determinant for calculation.
The area of the triangle formed by three collinear points is zero.
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]and hence, take the ratios of both the triangles it will be our required answer.
Complete step-by-step answer:
As the coordinates of \[\Delta ABC\]are \[A\left( {{x_1},{y_1}} \right) = \left( {6,3} \right)\],\[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right)\]and \[C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\].
To, calculate the area of both the triangles we use determinant method as \[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]
So calculating the area of \[\Delta ABC\], we substitute the values \[A\left( {{x_1},{y_1}} \right) = \left( {6,3} \right)\],\[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right)\]and \[C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\]in the above formula, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
6&3&1 \\
{ - 3}&5&1 \\
4&{ - 2}&1
\end{array}} \right|} \right|\]
On expanding the determinant, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left( {6\left( {5 + 2} \right) - 3\left( { - 3 - 4} \right) + 1\left( {6 - 20} \right)} \right)} \right|\]
On simplifying further, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left( {42 + 21 - 14} \right)} \right|\]
On solving the bracket, we get,
\[ \Rightarrow \]\[\Delta ABC = \left| {\dfrac{1}{2}\left( {49} \right)} \right|\]
Hence, the area of \[\Delta ABC = \dfrac{{49}}{2}\].
Now, calculating the area of \[\Delta PBC\]using the determinant method as,
\[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]
On substituting the values of P\[(x,y)\],\[B\left( {{x_2},{y_2}} \right) = \left( { - 3,5} \right)\]and \[C\left( {{x_3},{y_3}} \right) = \left( {4, - 2} \right)\], we get,
\[ \Rightarrow \]\[\Delta PBC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
x&y&1 \\
{ - 3}&5&1 \\
4&{ - 2}&1
\end{array}} \right|} \right|\]
On expanding the above determinant, we get,
\[ \Rightarrow \]\[\Delta PBC = \left| {\dfrac{1}{2}\left( {x\left( {5 + 2} \right) - y\left( { - 3 - 4} \right) + 1\left( {6 - 20} \right)} \right)} \right|\]
On simplifying further, we get,
\[ \Rightarrow \]\[\Delta PBC = \left| {\dfrac{1}{2}\left( {7x + 7y - 14} \right)} \right|\]
\[ \Rightarrow \]\[\Delta PBC = \dfrac{{7x + 7y - 14}}{2}\]
Hence, as we have to find the ratio of area of \[\dfrac{{\Delta PBC}}{{\Delta ABC}}\]
Hence, on putting the above calculated value we can simplify as,
\[\dfrac{{\Delta PBC}}{{\Delta ABC}} = \dfrac{{\dfrac{{7x + 7y - 14}}{2}}}{{\dfrac{1}{2}\left( {49} \right)}}\]
Hence, on cancelling the common terms out, we get,
\[ = \dfrac{{7x + 7y - 14}}{{\left( {49} \right)}}\]
Now, take 7 common from numerator,
\[ = \dfrac{{7(x + y - 2)}}{{\left( {49} \right)}}\]
Cancel \[7\]from both numerator and denominator,
\[\dfrac{{\Delta PBC}}{{\Delta ABC}} = \dfrac{{(x + y - 2)}}{7}\]
Hence proved.
Note: Remember the concept to calculate the area of triangle using determinant method as \[\Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|\]. Hence, expand the determinant carefully and then finally take their ratios.
Area of Triangle Formula Using Determinants
Since the area is a positive quantity, we always take the absolute value of the determinant in (1).
If the area is given, use both positive and negative values of the determinant for calculation.
The area of the triangle formed by three collinear points is zero.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

