
The coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]. lf p and q are intercepts made on new axes by a straight line whose equation referred to the original axes is \[x + y = 1\], then \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \]
A) 2
B) 4
C) 6
D) 8
Answer
578.4k+ views
Hint:Here first we will let X and Y be the new coordinate system. Then we will find the values of x and y in terms of ‘X’ and ‘Y’ and satisfy them in the given equation to get the values of ‘X’ and ‘Y’ which are equal to p and q. Now we will find the value of the given expression \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\].
Complete step-by-step answer:
Let X and Y be the new coordinate system then,
\[
x = X\cos \theta - Y\sin \theta \\
y = X\sin \theta + Y\cos \theta \\
\]
Now, since the coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]
Therefore, \[\theta = {60^ \circ }\]
Putting this value in above equations we get:-
\[
x = X\cos {60^ \circ } - Y\sin {60^ \circ } \\
y = X\sin {60^ \circ } + Y\cos {60^ \circ } \\
\]
As we know that,
\[
\cos {60^ \circ } = \dfrac{1}{2} \\
\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\]
Hence,
\[
x = X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
y = X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) \\
\]
Now satisfying these values in the given equation \[x + y = 1\] we get :-
\[
X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) + X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) = 1 \\
X\left( {\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}} \right) = 1 \\
X\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right) + Y\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right) = 1 \\
\]
Further evaluating we get:-
\[
X = p = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
\Rightarrow p = \dfrac{2}{{1 + \sqrt 3 }} \\
Y = q = \dfrac{1}{{\dfrac{{1 - \sqrt 3 }}{2}}} \\
\Rightarrow q = \dfrac{2}{{1 - \sqrt 3 }} \\
\]
Now evaluating the value of \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\] we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{{{{\left( {\dfrac{2}{{1 + \sqrt 3 }}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{2}{{1 - \sqrt 3 }}} \right)}^2}}} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = {\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right)^2} + {\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right)^2} \\
\]
Now applying the following identities:
\[
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
\]
We get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} + 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} + \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left[ {1 + 3 + 2\sqrt 3 + 1 + 3 - 2\sqrt 3 } \right] \\
\]
Cancelling the terms we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left( 8 \right) \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = 2 \\
\]
Therefore, option A is correct.
Note:Transformations in the coordinate plane suggest that along the coordinate grid or plane, you can use x-axis and y-axis in order to keep track of every move. The lines also provide good assistance while drawing the polygons and flat figures. You need to concentrate on the coordinates of the objects, vertices and then join them to make the image.
Complete step-by-step answer:
Let X and Y be the new coordinate system then,
\[
x = X\cos \theta - Y\sin \theta \\
y = X\sin \theta + Y\cos \theta \\
\]
Now, since the coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]
Therefore, \[\theta = {60^ \circ }\]
Putting this value in above equations we get:-
\[
x = X\cos {60^ \circ } - Y\sin {60^ \circ } \\
y = X\sin {60^ \circ } + Y\cos {60^ \circ } \\
\]
As we know that,
\[
\cos {60^ \circ } = \dfrac{1}{2} \\
\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\]
Hence,
\[
x = X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
y = X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) \\
\]
Now satisfying these values in the given equation \[x + y = 1\] we get :-
\[
X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) + X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) = 1 \\
X\left( {\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}} \right) = 1 \\
X\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right) + Y\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right) = 1 \\
\]
Further evaluating we get:-
\[
X = p = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
\Rightarrow p = \dfrac{2}{{1 + \sqrt 3 }} \\
Y = q = \dfrac{1}{{\dfrac{{1 - \sqrt 3 }}{2}}} \\
\Rightarrow q = \dfrac{2}{{1 - \sqrt 3 }} \\
\]
Now evaluating the value of \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\] we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{{{{\left( {\dfrac{2}{{1 + \sqrt 3 }}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{2}{{1 - \sqrt 3 }}} \right)}^2}}} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = {\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right)^2} + {\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right)^2} \\
\]
Now applying the following identities:
\[
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
\]
We get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} + 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} + \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left[ {1 + 3 + 2\sqrt 3 + 1 + 3 - 2\sqrt 3 } \right] \\
\]
Cancelling the terms we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left( 8 \right) \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = 2 \\
\]
Therefore, option A is correct.
Note:Transformations in the coordinate plane suggest that along the coordinate grid or plane, you can use x-axis and y-axis in order to keep track of every move. The lines also provide good assistance while drawing the polygons and flat figures. You need to concentrate on the coordinates of the objects, vertices and then join them to make the image.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

