
The coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]. lf p and q are intercepts made on new axes by a straight line whose equation referred to the original axes is \[x + y = 1\], then \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \]
A) 2
B) 4
C) 6
D) 8
Answer
579.9k+ views
Hint:Here first we will let X and Y be the new coordinate system. Then we will find the values of x and y in terms of ‘X’ and ‘Y’ and satisfy them in the given equation to get the values of ‘X’ and ‘Y’ which are equal to p and q. Now we will find the value of the given expression \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\].
Complete step-by-step answer:
Let X and Y be the new coordinate system then,
\[
x = X\cos \theta - Y\sin \theta \\
y = X\sin \theta + Y\cos \theta \\
\]
Now, since the coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]
Therefore, \[\theta = {60^ \circ }\]
Putting this value in above equations we get:-
\[
x = X\cos {60^ \circ } - Y\sin {60^ \circ } \\
y = X\sin {60^ \circ } + Y\cos {60^ \circ } \\
\]
As we know that,
\[
\cos {60^ \circ } = \dfrac{1}{2} \\
\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\]
Hence,
\[
x = X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
y = X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) \\
\]
Now satisfying these values in the given equation \[x + y = 1\] we get :-
\[
X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) + X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) = 1 \\
X\left( {\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}} \right) = 1 \\
X\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right) + Y\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right) = 1 \\
\]
Further evaluating we get:-
\[
X = p = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
\Rightarrow p = \dfrac{2}{{1 + \sqrt 3 }} \\
Y = q = \dfrac{1}{{\dfrac{{1 - \sqrt 3 }}{2}}} \\
\Rightarrow q = \dfrac{2}{{1 - \sqrt 3 }} \\
\]
Now evaluating the value of \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\] we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{{{{\left( {\dfrac{2}{{1 + \sqrt 3 }}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{2}{{1 - \sqrt 3 }}} \right)}^2}}} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = {\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right)^2} + {\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right)^2} \\
\]
Now applying the following identities:
\[
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
\]
We get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} + 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} + \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left[ {1 + 3 + 2\sqrt 3 + 1 + 3 - 2\sqrt 3 } \right] \\
\]
Cancelling the terms we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left( 8 \right) \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = 2 \\
\]
Therefore, option A is correct.
Note:Transformations in the coordinate plane suggest that along the coordinate grid or plane, you can use x-axis and y-axis in order to keep track of every move. The lines also provide good assistance while drawing the polygons and flat figures. You need to concentrate on the coordinates of the objects, vertices and then join them to make the image.
Complete step-by-step answer:
Let X and Y be the new coordinate system then,
\[
x = X\cos \theta - Y\sin \theta \\
y = X\sin \theta + Y\cos \theta \\
\]
Now, since the coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]
Therefore, \[\theta = {60^ \circ }\]
Putting this value in above equations we get:-
\[
x = X\cos {60^ \circ } - Y\sin {60^ \circ } \\
y = X\sin {60^ \circ } + Y\cos {60^ \circ } \\
\]
As we know that,
\[
\cos {60^ \circ } = \dfrac{1}{2} \\
\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\]
Hence,
\[
x = X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
y = X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) \\
\]
Now satisfying these values in the given equation \[x + y = 1\] we get :-
\[
X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) + X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) = 1 \\
X\left( {\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}} \right) = 1 \\
X\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right) + Y\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right) = 1 \\
\]
Further evaluating we get:-
\[
X = p = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
\Rightarrow p = \dfrac{2}{{1 + \sqrt 3 }} \\
Y = q = \dfrac{1}{{\dfrac{{1 - \sqrt 3 }}{2}}} \\
\Rightarrow q = \dfrac{2}{{1 - \sqrt 3 }} \\
\]
Now evaluating the value of \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\] we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{{{{\left( {\dfrac{2}{{1 + \sqrt 3 }}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{2}{{1 - \sqrt 3 }}} \right)}^2}}} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = {\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right)^2} + {\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right)^2} \\
\]
Now applying the following identities:
\[
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
\]
We get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} + 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} + \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left[ {1 + 3 + 2\sqrt 3 + 1 + 3 - 2\sqrt 3 } \right] \\
\]
Cancelling the terms we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left( 8 \right) \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = 2 \\
\]
Therefore, option A is correct.
Note:Transformations in the coordinate plane suggest that along the coordinate grid or plane, you can use x-axis and y-axis in order to keep track of every move. The lines also provide good assistance while drawing the polygons and flat figures. You need to concentrate on the coordinates of the objects, vertices and then join them to make the image.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

