
The coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]. lf p and q are intercepts made on new axes by a straight line whose equation referred to the original axes is \[x + y = 1\], then \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \]
A) 2
B) 4
C) 6
D) 8
Answer
593.7k+ views
Hint:Here first we will let X and Y be the new coordinate system. Then we will find the values of x and y in terms of ‘X’ and ‘Y’ and satisfy them in the given equation to get the values of ‘X’ and ‘Y’ which are equal to p and q. Now we will find the value of the given expression \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\].
Complete step-by-step answer:
Let X and Y be the new coordinate system then,
\[
x = X\cos \theta - Y\sin \theta \\
y = X\sin \theta + Y\cos \theta \\
\]
Now, since the coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]
Therefore, \[\theta = {60^ \circ }\]
Putting this value in above equations we get:-
\[
x = X\cos {60^ \circ } - Y\sin {60^ \circ } \\
y = X\sin {60^ \circ } + Y\cos {60^ \circ } \\
\]
As we know that,
\[
\cos {60^ \circ } = \dfrac{1}{2} \\
\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\]
Hence,
\[
x = X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
y = X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) \\
\]
Now satisfying these values in the given equation \[x + y = 1\] we get :-
\[
X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) + X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) = 1 \\
X\left( {\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}} \right) = 1 \\
X\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right) + Y\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right) = 1 \\
\]
Further evaluating we get:-
\[
X = p = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
\Rightarrow p = \dfrac{2}{{1 + \sqrt 3 }} \\
Y = q = \dfrac{1}{{\dfrac{{1 - \sqrt 3 }}{2}}} \\
\Rightarrow q = \dfrac{2}{{1 - \sqrt 3 }} \\
\]
Now evaluating the value of \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\] we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{{{{\left( {\dfrac{2}{{1 + \sqrt 3 }}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{2}{{1 - \sqrt 3 }}} \right)}^2}}} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = {\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right)^2} + {\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right)^2} \\
\]
Now applying the following identities:
\[
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
\]
We get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} + 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} + \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left[ {1 + 3 + 2\sqrt 3 + 1 + 3 - 2\sqrt 3 } \right] \\
\]
Cancelling the terms we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left( 8 \right) \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = 2 \\
\]
Therefore, option A is correct.
Note:Transformations in the coordinate plane suggest that along the coordinate grid or plane, you can use x-axis and y-axis in order to keep track of every move. The lines also provide good assistance while drawing the polygons and flat figures. You need to concentrate on the coordinates of the objects, vertices and then join them to make the image.
Complete step-by-step answer:
Let X and Y be the new coordinate system then,
\[
x = X\cos \theta - Y\sin \theta \\
y = X\sin \theta + Y\cos \theta \\
\]
Now, since the coordinate axes are rotated about the origin (0,0) in counter clockwise direction through an angle of \[{60^ \circ }\]
Therefore, \[\theta = {60^ \circ }\]
Putting this value in above equations we get:-
\[
x = X\cos {60^ \circ } - Y\sin {60^ \circ } \\
y = X\sin {60^ \circ } + Y\cos {60^ \circ } \\
\]
As we know that,
\[
\cos {60^ \circ } = \dfrac{1}{2} \\
\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2} \\
\]
Hence,
\[
x = X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
y = X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) \\
\]
Now satisfying these values in the given equation \[x + y = 1\] we get :-
\[
X\left( {\dfrac{1}{2}} \right) - Y\left( {\dfrac{{\sqrt 3 }}{2}} \right) + X\left( {\dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2}} \right) = 1 \\
X\left( {\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}} \right) + Y\left( {\dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}} \right) = 1 \\
X\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right) + Y\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right) = 1 \\
\]
Further evaluating we get:-
\[
X = p = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{2}}} \\
\Rightarrow p = \dfrac{2}{{1 + \sqrt 3 }} \\
Y = q = \dfrac{1}{{\dfrac{{1 - \sqrt 3 }}{2}}} \\
\Rightarrow q = \dfrac{2}{{1 - \sqrt 3 }} \\
\]
Now evaluating the value of \[\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}}\] we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{{{{\left( {\dfrac{2}{{1 + \sqrt 3 }}} \right)}^2}}} + \dfrac{1}{{{{\left( {\dfrac{2}{{1 - \sqrt 3 }}} \right)}^2}}} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = {\left( {\dfrac{{1 + \sqrt 3 }}{2}} \right)^2} + {\left( {\dfrac{{1 - \sqrt 3 }}{2}} \right)^2} \\
\]
Now applying the following identities:
\[
{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
\]
We get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} + 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} + \dfrac{{{{\left( 1 \right)}^2} + {{\left( {\sqrt 3 } \right)}^2} - 2\left( 1 \right)\left( {\sqrt 3 } \right)}}{4} \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left[ {1 + 3 + 2\sqrt 3 + 1 + 3 - 2\sqrt 3 } \right] \\
\]
Cancelling the terms we get:-
\[
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = \dfrac{1}{4}\left( 8 \right) \\
\dfrac{1}{{{p^2}}} + \dfrac{1}{{{q^2}}} = 2 \\
\]
Therefore, option A is correct.
Note:Transformations in the coordinate plane suggest that along the coordinate grid or plane, you can use x-axis and y-axis in order to keep track of every move. The lines also provide good assistance while drawing the polygons and flat figures. You need to concentrate on the coordinates of the objects, vertices and then join them to make the image.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

