
The condition for the lines \[lx + my + n = 0\] and \[{l_1}x + {m_1}y + {n_1} = 0\] to be conjugate with respect to the circle \[{x^2} + {y^2} = {r^2}\] is
(A) \[{r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}\]
(B) \[{r^2}\left( {l{l_1} - m{m_1}} \right) = n{n_1}\]
(C) \[{r^2}\left( {l{l_1} + m{m_1}} \right) + n{n_1} = 0\]
(D) \[{r^2}\left( {l{m_1} + {l_1}m} \right) = n{n_1}\]
Answer
482.4k+ views
Hint: Use the concept of conjugate lines which states that two lines are conjugate if the pole of a point on the line lies on the other line. Find the coordinate of any one point lying on the line \[lx + my + n = 0\], then substitute the obtained point in the equation of polar for the given circle and then equate this equation to the given equation of line \[{l_1}x + {m_1}y + {n_1} = 0\].
Complete step-by-step solution:
Let’s take a point \[P\left( {{x_1},{y_1}} \right)\] on line \[lx + my + n = 0\]
Putting \[{x_1}\] in the equation of line to find the corresponding \[y\] coordinate, we get
\[ \Rightarrow l{x_1} + m{y_1} + n = 0\]
On simplifying, we get
\[ \Rightarrow {y_1} = \dfrac{{ - l{x_1} - n}}{m}\]
Therefore, the coordinate of point \[P\] is \[\left( {{x_1},\dfrac{{ - l{x_1} - n}}{m}} \right)\].
Polar of a point \[P\left( {{x_1},{y_1}} \right)\] with respect to a circle \[{x^2} + {y^2} = {r^2}\] is given by \[x{x_1} + y{y_1} - {r^2} = 0 - - - (1)\].
Substituting point \[P\left( {{x_1},{y_1}} \right)\] in \[(1)\] , we get
\[ \Rightarrow x{x_1} + y\left( {\dfrac{{ - l{x_1} - n}}{m}} \right) - {r^2} = 0\]
On solving,
\[ \Rightarrow mx{x_1} + y\left( { - l{x_1}y - ny} \right) - m{r^2} = 0\]
\[ \Rightarrow mx{x_1} - y\left( {l{x_1}y + ny} \right) - m{r^2} = 0\]
On rearranging,
\[ \Rightarrow \left( {m{x_1}} \right)x - \left( {l{x_1}y + ny} \right)y - m{r^2} = 0\]
Since, the lines \[lx + my + n = 0\] and \[{l_1}x + {m_1}y + {n_1} = 0\] are conjugate so on comparing \[\left( {m{x_1}} \right)x - \left( {l{x_1}y + ny} \right)y - m{r^2} = 0\] with the given equation of line \[{l_1}x + {m_1}y + {n_1} = 0\], we get
\[ \Rightarrow \dfrac{{{l_1}}}{{m{x_1}}} = \dfrac{{{m_1}}}{{ - \left( {l{x_1} + n} \right)}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}} - - - (2)\]
On taking two at a time and solving we get,
\[ \Rightarrow \dfrac{{{l_1}}}{{m{x_1}}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}}\]
Taking \[( - m{r^2})\] to left hand side and \[m{x_1}\] to right hand side,
\[ \Rightarrow - m{r^2}{l_1} = m{n_1}{x_1}\]
On simplifying,
\[ \Rightarrow {x_1} = \dfrac{{ - m{r^2}{l_1}}}{{m{n_1}}}\]
\[ \Rightarrow {x_1} = \dfrac{{ - {r^2}{l_1}}}{{{n_1}}} - - - (3)\]
Now taking second and third terms of \[(2)\] , we get
\[ \Rightarrow \dfrac{{{m_1}}}{{ - \left( {l{x_1} + n} \right)}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}}\]
Taking \[( - m{r^2})\] to the left-hand side and \[ - \left( {l{x_1} + n} \right)\] to the right-hand side, we get
\[ \Rightarrow - {m_1}m{r^2} = - {n_1}\left( {l{x_1} + n} \right)\]
Eliminating minus sign from both the sides and on simplification, we get
\[ \Rightarrow {m_1}m{r^2} = {n_1}l{x_1} + {n_1}n\]
Putting the value of \[{x_1}\] from \[(3)\] , we get
\[ \Rightarrow {m_1}m{r^2} = {n_1}l \times \left( {\dfrac{{ - {r^2}{l_1}}}{{{n_1}}}} \right) + {n_1}n\]
On simplification,
\[ \Rightarrow {m_1}m{r^2} = - {r^2}l{l_1} + {n_1}n\]
Taking \[\left( { - {r^2}l{l_1}} \right)\] to the left-hand side,
\[ \Rightarrow {m_1}m{r^2} + {r^2}l{l_1} = {n_1}n\]
Taking \[{r^2}\] common from the left-hand side, we get
\[ \Rightarrow {r^2}\left( {{m_1}m + l{l_1}} \right) = {n_1}n\]
On rewriting,
\[ \Rightarrow {r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}\]
Therefore, the condition for the lines \[lx + my + n = 0\] and \[{l_1}x + {m_1}y + {n_1} = 0\] to be conjugate with respect to the circle \[{x^2} + {y^2} = {r^2}\] is \[{r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}\].
Hence, option (A) is correct.
Note: We have used that the polar of a point \[P\left( {{x_1},{y_1}} \right)\] with respect to a circle \[{x^2} + {y^2} = {r^2}\] is \[x{x_1} + y{y_1} - {r^2} = 0\]. But if the equation of circle is \[{x^2} + {y^2} + 2gx + 2fy + c = 0\] then the equation of polar will be given by \[x{x_1} + y{y_1} + g\left( {x + {x_1}} \right) + f\left( {y + {y_1}} \right) + c = 0\].
Complete step-by-step solution:
Let’s take a point \[P\left( {{x_1},{y_1}} \right)\] on line \[lx + my + n = 0\]
Putting \[{x_1}\] in the equation of line to find the corresponding \[y\] coordinate, we get
\[ \Rightarrow l{x_1} + m{y_1} + n = 0\]
On simplifying, we get
\[ \Rightarrow {y_1} = \dfrac{{ - l{x_1} - n}}{m}\]
Therefore, the coordinate of point \[P\] is \[\left( {{x_1},\dfrac{{ - l{x_1} - n}}{m}} \right)\].
Polar of a point \[P\left( {{x_1},{y_1}} \right)\] with respect to a circle \[{x^2} + {y^2} = {r^2}\] is given by \[x{x_1} + y{y_1} - {r^2} = 0 - - - (1)\].
Substituting point \[P\left( {{x_1},{y_1}} \right)\] in \[(1)\] , we get
\[ \Rightarrow x{x_1} + y\left( {\dfrac{{ - l{x_1} - n}}{m}} \right) - {r^2} = 0\]
On solving,
\[ \Rightarrow mx{x_1} + y\left( { - l{x_1}y - ny} \right) - m{r^2} = 0\]
\[ \Rightarrow mx{x_1} - y\left( {l{x_1}y + ny} \right) - m{r^2} = 0\]
On rearranging,
\[ \Rightarrow \left( {m{x_1}} \right)x - \left( {l{x_1}y + ny} \right)y - m{r^2} = 0\]
Since, the lines \[lx + my + n = 0\] and \[{l_1}x + {m_1}y + {n_1} = 0\] are conjugate so on comparing \[\left( {m{x_1}} \right)x - \left( {l{x_1}y + ny} \right)y - m{r^2} = 0\] with the given equation of line \[{l_1}x + {m_1}y + {n_1} = 0\], we get
\[ \Rightarrow \dfrac{{{l_1}}}{{m{x_1}}} = \dfrac{{{m_1}}}{{ - \left( {l{x_1} + n} \right)}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}} - - - (2)\]
On taking two at a time and solving we get,
\[ \Rightarrow \dfrac{{{l_1}}}{{m{x_1}}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}}\]
Taking \[( - m{r^2})\] to left hand side and \[m{x_1}\] to right hand side,
\[ \Rightarrow - m{r^2}{l_1} = m{n_1}{x_1}\]
On simplifying,
\[ \Rightarrow {x_1} = \dfrac{{ - m{r^2}{l_1}}}{{m{n_1}}}\]
\[ \Rightarrow {x_1} = \dfrac{{ - {r^2}{l_1}}}{{{n_1}}} - - - (3)\]
Now taking second and third terms of \[(2)\] , we get
\[ \Rightarrow \dfrac{{{m_1}}}{{ - \left( {l{x_1} + n} \right)}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}}\]
Taking \[( - m{r^2})\] to the left-hand side and \[ - \left( {l{x_1} + n} \right)\] to the right-hand side, we get
\[ \Rightarrow - {m_1}m{r^2} = - {n_1}\left( {l{x_1} + n} \right)\]
Eliminating minus sign from both the sides and on simplification, we get
\[ \Rightarrow {m_1}m{r^2} = {n_1}l{x_1} + {n_1}n\]
Putting the value of \[{x_1}\] from \[(3)\] , we get
\[ \Rightarrow {m_1}m{r^2} = {n_1}l \times \left( {\dfrac{{ - {r^2}{l_1}}}{{{n_1}}}} \right) + {n_1}n\]
On simplification,
\[ \Rightarrow {m_1}m{r^2} = - {r^2}l{l_1} + {n_1}n\]
Taking \[\left( { - {r^2}l{l_1}} \right)\] to the left-hand side,
\[ \Rightarrow {m_1}m{r^2} + {r^2}l{l_1} = {n_1}n\]
Taking \[{r^2}\] common from the left-hand side, we get
\[ \Rightarrow {r^2}\left( {{m_1}m + l{l_1}} \right) = {n_1}n\]
On rewriting,
\[ \Rightarrow {r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}\]
Therefore, the condition for the lines \[lx + my + n = 0\] and \[{l_1}x + {m_1}y + {n_1} = 0\] to be conjugate with respect to the circle \[{x^2} + {y^2} = {r^2}\] is \[{r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}\].
Hence, option (A) is correct.
Note: We have used that the polar of a point \[P\left( {{x_1},{y_1}} \right)\] with respect to a circle \[{x^2} + {y^2} = {r^2}\] is \[x{x_1} + y{y_1} - {r^2} = 0\]. But if the equation of circle is \[{x^2} + {y^2} + 2gx + 2fy + c = 0\] then the equation of polar will be given by \[x{x_1} + y{y_1} + g\left( {x + {x_1}} \right) + f\left( {y + {y_1}} \right) + c = 0\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

