
The complex ${{[Mn{{(CN)}_{6}}]}^{4-}}$:
A. is high spin complex
B. is diamagnetic ion
C. have magnetic moment 1.73 BM
D. is outer orbital complex
Answer
507.9k+ views
Hint:If any complex has more unpaired electrons means it has a high spin, while less unpaired electron results in low spin. Inner orbital complexes contain the central atom using inner d orbital, while outer orbital complexes use outer d orbitals in the central metal.
Complete step-by-step answer:We have been given a complex ${{[Mn{{(CN)}_{6}}]}^{4-}}$, Mn has a configuration $M{{n}^{2+}}[Ar]3{{d}^{5}}$ , with CN being a ligand, this complex consist of unpaired electrons, hence it is paramagnetic, while it is an inner orbital complex with low spin due to the nature of the ligand CN. So, now we will take out its magnetic moment.
Magnetic moment of any complex is its behavior due to an unpaired electron under the influence of a magnetic field. It is known as a spin only magnetic moment as it is based on the spin of the unpaired electron. The formula for calculation of magnetic moment is, ${{\mu }_{s}}=\sqrt{n(n+2)BM}$,where ${{\mu }_{s}}$, is the spin magnetic moment, n is number of unpaired electron, BM is known as Bohr magneton.
Now, taking out the magnetic moment, we have n = 1 for this complex, so,
${{\mu }_{s}}=\sqrt{1(1+2)BM}$
${{\mu }_{s}}=\sqrt{3BM}$
${{\mu }_{s}}$= 1.73 BM
So, the magnetic moment is 1.73 BM, hence, option C is correct for this complex.
Note:
Outer orbital complexes have the hybridization of dsp order, while inner orbital complexes have the hybridization of spd order. The nature of ligands lead to paramagnetic or diamagnetic behavior in coordination complexes.
Complete step-by-step answer:We have been given a complex ${{[Mn{{(CN)}_{6}}]}^{4-}}$, Mn has a configuration $M{{n}^{2+}}[Ar]3{{d}^{5}}$ , with CN being a ligand, this complex consist of unpaired electrons, hence it is paramagnetic, while it is an inner orbital complex with low spin due to the nature of the ligand CN. So, now we will take out its magnetic moment.
Magnetic moment of any complex is its behavior due to an unpaired electron under the influence of a magnetic field. It is known as a spin only magnetic moment as it is based on the spin of the unpaired electron. The formula for calculation of magnetic moment is, ${{\mu }_{s}}=\sqrt{n(n+2)BM}$,where ${{\mu }_{s}}$, is the spin magnetic moment, n is number of unpaired electron, BM is known as Bohr magneton.
Now, taking out the magnetic moment, we have n = 1 for this complex, so,
${{\mu }_{s}}=\sqrt{1(1+2)BM}$
${{\mu }_{s}}=\sqrt{3BM}$
${{\mu }_{s}}$= 1.73 BM
So, the magnetic moment is 1.73 BM, hence, option C is correct for this complex.
Note:
Outer orbital complexes have the hybridization of dsp order, while inner orbital complexes have the hybridization of spd order. The nature of ligands lead to paramagnetic or diamagnetic behavior in coordination complexes.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

