
The common features among $ CO $ , $ C{N^ - } $ and $ N{O^ + } $ are:
(A) Bond order three and isoelectronic
(B) Bond order three and weak field ligands
(C) Bond order two and $ \pi $ - acceptors
(D) Bond order three and $ \pi $ - donors
(E) Isoelectronic and strong field ligands
Answer
544.2k+ views
Hint: Bond order is nothing but the number of chemical bonds with the atoms that form a compound. This in turn also indicates the stability of the bond.
While ligands are nothing but ions or molecules that bond to the central atom while forming a compound. Ligands must have at least one donor with a lone pair of electrons such that it is capable of forming a covalent bond with the central atom. To know whether a ligand is in the weak field spectra or the strong field spectra you can always refer to the spectrochemical series.
Formulas used: We will be using the formula to find the bond order of a molecule from its molecular orbital configuration, $ B.O. = \dfrac{1}{2}\left( {{N_b} - {N_a}} \right) $ Where $ B.O. $ is the bond order, $ {N_b} $ is the number of bonding electrons or the number of electrons in bonding molecular orbital, and $ {N_a} $ is the number of antibonding electrons in the molecular orbit.
Complete Step by Step answer
Now we have 3 molecules/ions: $ CO $ , $ C{N^ - } $ and $ N{O^ + } $ .
Let us start by calculating the total number of electrons in these compounds,
The number of electrons in $ CO $ will be given by,
$ {N_{CO}} $ =number of electrons in Carbon atom + number of electrons in oxygen atom
$ {N_{CO}} = 6 + 7 $
$ \Rightarrow {N_{CO}} = 14 $
Similarly, the number of electrons in $ C{N^ - } $ will be, $ {N_{C{N^ - }}} = 6 + 7 + 1 $
$ \Rightarrow {N_{C{N^ - }}} = 14 $
The total number of electrons in $ N{O^ + } $ will be, $ {N_{N{O^ + }}} = 7 + 8 - 1 $
$ \Rightarrow {N_{N{O^ + }}} = 14 $
Since all the three compounds have the same number of electrons, we can say that the 3 compounds are isoelectronic in nature.
Now considering the molecular configuration of the molecules/ions,
Molecular orbital configuration of $ CO $ : $ \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\pi 2p_x^2 \approx \pi 2p_y^2,\pi 2p_z^2 $
Thus, the bond order of $ CO $ is given by $ B.O. = \dfrac{1}{2}\left( {{N_b} - {N_a}} \right) $ ,where $ {N_b} = 10 $ and $ {N_a} = 4 $ .
$ \Rightarrow B.O. = \dfrac{1}{2}\left( {10 - 4} \right) = \dfrac{1}{2}\left( 6 \right) = 3 $
Molecular orbital configuration of $ C{N^ - } $ : $ \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\pi 2p_x^2\pi 2p_y^2,\pi 2p_z^2 $
Thus, the bond order of $ C{N^ - } $ is given with $ {N_b} = 10 $ and $ {N_a} = 4 $ .
$ \Rightarrow B.O. = \dfrac{1}{2}\left( {10 - 4} \right) = \dfrac{1}{2}\left( 6 \right) = 3 $
Similarly, for $ N{O^ + } $ the M.O would be, $ \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\pi 2p_x^2 \approx \pi 2p_y^2,\pi 2p_z^2 $
Thus, the bond order will be given by,
$ B.O. = \dfrac{1}{2}\left( {10 - 4} \right) = \dfrac{1}{2}\left( 6 \right) = 3 $
And now we can see that all the three molecules/ions have the same bond order of 3. Thus, they are similar to each other for the fact that the molecules have the same bond order of 3 and are isoelectronic with 14 electrons in its molecular orbits.
Hence, the correct answer is option A.
Note
If you are wondering how to find $ {N_b} $ and $ {N_a} $ , observe the M.O of the molecules/ions, just like electronic configuration of elements the number above the orbitals represent the number of electrons in them and the orbitals with a $ * $ represents anti-bonding orbitals.
While ligands are nothing but ions or molecules that bond to the central atom while forming a compound. Ligands must have at least one donor with a lone pair of electrons such that it is capable of forming a covalent bond with the central atom. To know whether a ligand is in the weak field spectra or the strong field spectra you can always refer to the spectrochemical series.
Formulas used: We will be using the formula to find the bond order of a molecule from its molecular orbital configuration, $ B.O. = \dfrac{1}{2}\left( {{N_b} - {N_a}} \right) $ Where $ B.O. $ is the bond order, $ {N_b} $ is the number of bonding electrons or the number of electrons in bonding molecular orbital, and $ {N_a} $ is the number of antibonding electrons in the molecular orbit.
Complete Step by Step answer
Now we have 3 molecules/ions: $ CO $ , $ C{N^ - } $ and $ N{O^ + } $ .
Let us start by calculating the total number of electrons in these compounds,
The number of electrons in $ CO $ will be given by,
$ {N_{CO}} $ =number of electrons in Carbon atom + number of electrons in oxygen atom
$ {N_{CO}} = 6 + 7 $
$ \Rightarrow {N_{CO}} = 14 $
Similarly, the number of electrons in $ C{N^ - } $ will be, $ {N_{C{N^ - }}} = 6 + 7 + 1 $
$ \Rightarrow {N_{C{N^ - }}} = 14 $
The total number of electrons in $ N{O^ + } $ will be, $ {N_{N{O^ + }}} = 7 + 8 - 1 $
$ \Rightarrow {N_{N{O^ + }}} = 14 $
Since all the three compounds have the same number of electrons, we can say that the 3 compounds are isoelectronic in nature.
Now considering the molecular configuration of the molecules/ions,
Molecular orbital configuration of $ CO $ : $ \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\pi 2p_x^2 \approx \pi 2p_y^2,\pi 2p_z^2 $
Thus, the bond order of $ CO $ is given by $ B.O. = \dfrac{1}{2}\left( {{N_b} - {N_a}} \right) $ ,where $ {N_b} = 10 $ and $ {N_a} = 4 $ .
$ \Rightarrow B.O. = \dfrac{1}{2}\left( {10 - 4} \right) = \dfrac{1}{2}\left( 6 \right) = 3 $
Molecular orbital configuration of $ C{N^ - } $ : $ \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\pi 2p_x^2\pi 2p_y^2,\pi 2p_z^2 $
Thus, the bond order of $ C{N^ - } $ is given with $ {N_b} = 10 $ and $ {N_a} = 4 $ .
$ \Rightarrow B.O. = \dfrac{1}{2}\left( {10 - 4} \right) = \dfrac{1}{2}\left( 6 \right) = 3 $
Similarly, for $ N{O^ + } $ the M.O would be, $ \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\pi 2p_x^2 \approx \pi 2p_y^2,\pi 2p_z^2 $
Thus, the bond order will be given by,
$ B.O. = \dfrac{1}{2}\left( {10 - 4} \right) = \dfrac{1}{2}\left( 6 \right) = 3 $
And now we can see that all the three molecules/ions have the same bond order of 3. Thus, they are similar to each other for the fact that the molecules have the same bond order of 3 and are isoelectronic with 14 electrons in its molecular orbits.
Hence, the correct answer is option A.
Note
If you are wondering how to find $ {N_b} $ and $ {N_a} $ , observe the M.O of the molecules/ions, just like electronic configuration of elements the number above the orbitals represent the number of electrons in them and the orbitals with a $ * $ represents anti-bonding orbitals.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

