
The coefficients of three consecutive terms of \[{\left( {1 + x} \right)^{n + 5}}\] are in the ratio \[5:10:14\], then \[n = \]
Answer
584.4k+ views
Hint: In this question, we will proceed by letting the consecutive terms and finding their coefficients. Then use the given ratio two find two equations in terms of \[n\]. Solve them to find the required answer.
Complete step by step answer:
Let the three consecutive terms be \[{\left( {r - 1} \right)^{th}},{r^{th}}\] and \[{\left( {r + 1} \right)^{th}}\] terms i.e., \[{T_{r - 1}},{T_r},{T_{r + 1}}\] of the expansion \[{\left( {1 + x} \right)^{n + 5}}\].
We know that the general term of expansion \[{\left( {1 + x} \right)^n}\] is \[{T_{r + 1}} = {}^n{C_r}{x^r}\]
So, for the expansion \[{\left( {1 + x} \right)^{n + 5}}\] we have
\[
\Rightarrow {T_{r - 1}} = {}^{n + 5}{C_{r - 2}}{x^{r - 2}} \\
\Rightarrow {T_r} = {}^{n + 5}{C_{r - 1}}{x^{r - 1}} \\
\Rightarrow {T_{r + 1}} = {}^{n + 5}{C_r}{x^r} \\
\]
Hence the coefficients of terms \[{\left( {r - 1} \right)^{th}},{r^{th}}\] and \[{\left( {r + 1} \right)^{th}}\] are \[{}^{n + 5}{C_{r - 2}},{}^{n + 5}{C_{r - 1}}\] and \[{}^{n + 5}{C_r}\] respectively.
Given that the coefficients of \[{\left( {r - 1} \right)^{th}},{r^{th}}\] and \[{\left( {r + 1} \right)^{th}}\] terms are in a ration of \[5:10:14\].
So, we have
\[
\Rightarrow \dfrac{{{\text{coefficient of }}{{\left( {r - 1} \right)}^{th}}}}{{{\text{coefficient of }}{r^{th}}}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{{}^{n + 5}{C_{r - 2}}}}{{{}^{n + 5}{C_{r - 1}}}} = \dfrac{5}{{10}} \\
\]
Using the formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] we have
\[
\Rightarrow \dfrac{{\dfrac{{\left( {n + 5} \right)!}}{{\left( {r - 2} \right)!\left[ {n - \left( {r - 2} \right)} \right]!}}}}{{\dfrac{{\left( {n + 5} \right)!}}{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}{{\left( {r - 2} \right)!\left[ {n - \left( {r - 2} \right)} \right]!}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{\left( {r - 1} \right)\left( {r - 2} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}{{\left( {r - 2} \right)!\left( {n - \left( {r - 2} \right)} \right)\left[ {n - \left( {r - 1} \right)} \right]!}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{\left( {r - 1} \right)}}{{n - \left( {r - 2} \right)}} = \dfrac{5}{{10}} \\
\Rightarrow 10r - 10 = 5n - 5r + 10 \\
\Rightarrow 5n = 15r - 20....................................................\left( 1 \right) \\
\]
Also, we have
\[
\Rightarrow \dfrac{{{\text{coefficient of }}{r^{th}}}}{{{\text{coefficient of }}{{\left( {r + 1} \right)}^{th}}}} = \dfrac{{10}}{{14}} \\
\Rightarrow \dfrac{{{}^{n + 5}{C_{r - 2}}}}{{{}^{n + 5}{C_{r - 1}}}} = \dfrac{5}{7} \\
\]
Using the formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] we have
\[
\Rightarrow \dfrac{{\dfrac{{\left( {n + 5} \right)!}}{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}}}{{\dfrac{{\left( {n + 5} \right)!}}{{\left( r \right)!\left[ {n - \left( r \right)} \right]!}}}} = \dfrac{5}{7} \\
\Rightarrow \dfrac{{\left( r \right)!\left[ {n - \left( r \right)} \right]!}}{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}} = \dfrac{5}{7} \\
\Rightarrow \dfrac{{\left( r \right)\left( {r - 1} \right)!\left[ {n - \left( r \right)} \right]!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)\left[ {n - \left( r \right)} \right]!}} = \dfrac{5}{7} \\
\Rightarrow \dfrac{{\left( r \right)}}{{n - \left( {r - 1} \right)}} = \dfrac{5}{7} \\
\Rightarrow 7r = 5n - 5r + 5 \\
\Rightarrow 5n - 12r + 5 = 0 \\
\Rightarrow 5n = 12r - 5....................................................\left( 2 \right) \\
\]
From equation (1) and (2), we have
\[
\Rightarrow 15r - 20 = 12r - 5 \\
\Rightarrow 15r - 12r = 20 - 5 \\
\Rightarrow 3r = 15 \\
\Rightarrow r = \dfrac{{15}}{3} \\
\therefore r = 5 \\
\]
Substituting \[r = 5\] in equation (1), we have
\[
\Rightarrow 5n = 15\left( 5 \right) - 20 \\
\Rightarrow 5n = 75 - 20 \\
\Rightarrow 5n = 55 \\
\Rightarrow n = \dfrac{{55}}{5} \\
\therefore n = 11 \\
\]
Thus, the value of \[n\] is 11.
Note:
The general term of expansion \[{\left( {1 + x} \right)^n}\] is \[{T_{r + 1}} = {}^n{C_r}{x^r}\]. Don’t confuse when you are expanding the terms of combinations. We can also check our answer by substituting the values of \[r,n\] in the considered terms by checking whether their coefficients are consecutive or not.
Complete step by step answer:
Let the three consecutive terms be \[{\left( {r - 1} \right)^{th}},{r^{th}}\] and \[{\left( {r + 1} \right)^{th}}\] terms i.e., \[{T_{r - 1}},{T_r},{T_{r + 1}}\] of the expansion \[{\left( {1 + x} \right)^{n + 5}}\].
We know that the general term of expansion \[{\left( {1 + x} \right)^n}\] is \[{T_{r + 1}} = {}^n{C_r}{x^r}\]
So, for the expansion \[{\left( {1 + x} \right)^{n + 5}}\] we have
\[
\Rightarrow {T_{r - 1}} = {}^{n + 5}{C_{r - 2}}{x^{r - 2}} \\
\Rightarrow {T_r} = {}^{n + 5}{C_{r - 1}}{x^{r - 1}} \\
\Rightarrow {T_{r + 1}} = {}^{n + 5}{C_r}{x^r} \\
\]
Hence the coefficients of terms \[{\left( {r - 1} \right)^{th}},{r^{th}}\] and \[{\left( {r + 1} \right)^{th}}\] are \[{}^{n + 5}{C_{r - 2}},{}^{n + 5}{C_{r - 1}}\] and \[{}^{n + 5}{C_r}\] respectively.
Given that the coefficients of \[{\left( {r - 1} \right)^{th}},{r^{th}}\] and \[{\left( {r + 1} \right)^{th}}\] terms are in a ration of \[5:10:14\].
So, we have
\[
\Rightarrow \dfrac{{{\text{coefficient of }}{{\left( {r - 1} \right)}^{th}}}}{{{\text{coefficient of }}{r^{th}}}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{{}^{n + 5}{C_{r - 2}}}}{{{}^{n + 5}{C_{r - 1}}}} = \dfrac{5}{{10}} \\
\]
Using the formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] we have
\[
\Rightarrow \dfrac{{\dfrac{{\left( {n + 5} \right)!}}{{\left( {r - 2} \right)!\left[ {n - \left( {r - 2} \right)} \right]!}}}}{{\dfrac{{\left( {n + 5} \right)!}}{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}{{\left( {r - 2} \right)!\left[ {n - \left( {r - 2} \right)} \right]!}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{\left( {r - 1} \right)\left( {r - 2} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}{{\left( {r - 2} \right)!\left( {n - \left( {r - 2} \right)} \right)\left[ {n - \left( {r - 1} \right)} \right]!}} = \dfrac{5}{{10}} \\
\Rightarrow \dfrac{{\left( {r - 1} \right)}}{{n - \left( {r - 2} \right)}} = \dfrac{5}{{10}} \\
\Rightarrow 10r - 10 = 5n - 5r + 10 \\
\Rightarrow 5n = 15r - 20....................................................\left( 1 \right) \\
\]
Also, we have
\[
\Rightarrow \dfrac{{{\text{coefficient of }}{r^{th}}}}{{{\text{coefficient of }}{{\left( {r + 1} \right)}^{th}}}} = \dfrac{{10}}{{14}} \\
\Rightarrow \dfrac{{{}^{n + 5}{C_{r - 2}}}}{{{}^{n + 5}{C_{r - 1}}}} = \dfrac{5}{7} \\
\]
Using the formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] we have
\[
\Rightarrow \dfrac{{\dfrac{{\left( {n + 5} \right)!}}{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}}}}{{\dfrac{{\left( {n + 5} \right)!}}{{\left( r \right)!\left[ {n - \left( r \right)} \right]!}}}} = \dfrac{5}{7} \\
\Rightarrow \dfrac{{\left( r \right)!\left[ {n - \left( r \right)} \right]!}}{{\left( {r - 1} \right)!\left[ {n - \left( {r - 1} \right)} \right]!}} = \dfrac{5}{7} \\
\Rightarrow \dfrac{{\left( r \right)\left( {r - 1} \right)!\left[ {n - \left( r \right)} \right]!}}{{\left( {r - 1} \right)!\left( {n - \left( {r - 1} \right)} \right)\left[ {n - \left( r \right)} \right]!}} = \dfrac{5}{7} \\
\Rightarrow \dfrac{{\left( r \right)}}{{n - \left( {r - 1} \right)}} = \dfrac{5}{7} \\
\Rightarrow 7r = 5n - 5r + 5 \\
\Rightarrow 5n - 12r + 5 = 0 \\
\Rightarrow 5n = 12r - 5....................................................\left( 2 \right) \\
\]
From equation (1) and (2), we have
\[
\Rightarrow 15r - 20 = 12r - 5 \\
\Rightarrow 15r - 12r = 20 - 5 \\
\Rightarrow 3r = 15 \\
\Rightarrow r = \dfrac{{15}}{3} \\
\therefore r = 5 \\
\]
Substituting \[r = 5\] in equation (1), we have
\[
\Rightarrow 5n = 15\left( 5 \right) - 20 \\
\Rightarrow 5n = 75 - 20 \\
\Rightarrow 5n = 55 \\
\Rightarrow n = \dfrac{{55}}{5} \\
\therefore n = 11 \\
\]
Thus, the value of \[n\] is 11.
Note:
The general term of expansion \[{\left( {1 + x} \right)^n}\] is \[{T_{r + 1}} = {}^n{C_r}{x^r}\]. Don’t confuse when you are expanding the terms of combinations. We can also check our answer by substituting the values of \[r,n\] in the considered terms by checking whether their coefficients are consecutive or not.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

