
The coefficient of ${x^n}$, where n is any positive integer, in the expansion of ${\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}}$ is
$\left( a \right)$ 1
$\left( b \right)\dfrac{{n + 1}}{2}$
$\left( c \right)$ 2n + 1
$\left( d \right)$ n + 1
Answer
598.2k+ views
Hint: In this particular type of question use the concept that the binomial expansion of ${\left( {1 + x} \right)^n}$ is given as, ${}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$, so in place of n substitute, -2 and in place of x substitute –x, so use these concepts to get the solution of the question.
Complete step-by-step answer:
Given equation,
${\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}}$................ (1)
According to binomial theorem the expansion of ${\left( {1 + x} \right)^n}$ is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property in above equation we have,
$ \Rightarrow {}^n{C_0} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} = 1$, ${}^n{C_1} = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} = n$, ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2!}}$ , ${}^n{C_3} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}$ and so on......., so the above equation converts into,
$ \Rightarrow {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ..............$ ............... (2)
Now substitute in place of n, -2 and in place of x, -x in the above equation we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( { - x} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right)}}{{3!}}{\left( { - x} \right)^3} + .............. + \infty $
Now simplify we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + .............. + \infty $
Now substitute this value in equation (1) we have,
\[ \Rightarrow {\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}} = {\left( {{{\left( {1 - x} \right)}^{ - 2}}} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow {\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}} = {\left( {1 - x} \right)^{ - 1}}\]....................... (3)
Now substitute n = -1 and x = -x in equation (2) we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 1}} = 1 + \left( { - 1} \right)\left( { - x} \right) + \dfrac{{\left( { - 1} \right)\left( { - 1 - 1} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - 1} \right)\left( { - 1 - 1} \right)\left( { - 1 - 2} \right)}}{{3!}}{\left( { - x} \right)^3} + .............. + \infty $
Now simplify we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 1}} = 1 + x + {x^2} + {x^3} + .............. + {x^n} + ............\infty $
So from equation (3) we have,
\[ \Rightarrow {\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}} = 1 + x + {x^2} + {x^3} + .............. + {x^n} + ............\infty \]
Now as we see from the above equation the coefficient of \[{x^n}\] in the expansion of ${\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}}$ is 1.
So this is the required answer.
Hence option (A) is the correct answer.
Note – Whenever we face such types of question the key concept we have to remember is that always recall the binomial expansion and the formula of combination which is all stated above, so first use the expansion formula as above then apply the combination formula as above then use the expansion formula as above and check what is the coefficient of ${x^n}$ which is the required answer.
Complete step-by-step answer:
Given equation,
${\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}}$................ (1)
According to binomial theorem the expansion of ${\left( {1 + x} \right)^n}$ is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + .............. + {}^n{C_n}{x^n}$
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property in above equation we have,
$ \Rightarrow {}^n{C_0} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} = 1$, ${}^n{C_1} = \dfrac{{n!}}{{1!\left( {n - 1} \right)!}} = n$, ${}^n{C_2} = \dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = \dfrac{{n\left( {n - 1} \right)}}{{2!}}$ , ${}^n{C_3} = \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}$ and so on......., so the above equation converts into,
$ \Rightarrow {\left( {1 + x} \right)^n} = 1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + ..............$ ............... (2)
Now substitute in place of n, -2 and in place of x, -x in the above equation we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 2}} = 1 + \left( { - 2} \right)\left( { - x} \right) + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - 2} \right)\left( { - 2 - 1} \right)\left( { - 2 - 2} \right)}}{{3!}}{\left( { - x} \right)^3} + .............. + \infty $
Now simplify we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 2}} = 1 + 2x + 3{x^2} + 4{x^3} + .............. + \infty $
Now substitute this value in equation (1) we have,
\[ \Rightarrow {\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}} = {\left( {{{\left( {1 - x} \right)}^{ - 2}}} \right)^{\dfrac{1}{2}}}\]
\[ \Rightarrow {\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}} = {\left( {1 - x} \right)^{ - 1}}\]....................... (3)
Now substitute n = -1 and x = -x in equation (2) we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 1}} = 1 + \left( { - 1} \right)\left( { - x} \right) + \dfrac{{\left( { - 1} \right)\left( { - 1 - 1} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - 1} \right)\left( { - 1 - 1} \right)\left( { - 1 - 2} \right)}}{{3!}}{\left( { - x} \right)^3} + .............. + \infty $
Now simplify we have,
$ \Rightarrow {\left( {1 - x} \right)^{ - 1}} = 1 + x + {x^2} + {x^3} + .............. + {x^n} + ............\infty $
So from equation (3) we have,
\[ \Rightarrow {\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}} = 1 + x + {x^2} + {x^3} + .............. + {x^n} + ............\infty \]
Now as we see from the above equation the coefficient of \[{x^n}\] in the expansion of ${\left( {1 + 2x + 3{x^2} + ..... + \infty } \right)^{\dfrac{1}{2}}}$ is 1.
So this is the required answer.
Hence option (A) is the correct answer.
Note – Whenever we face such types of question the key concept we have to remember is that always recall the binomial expansion and the formula of combination which is all stated above, so first use the expansion formula as above then apply the combination formula as above then use the expansion formula as above and check what is the coefficient of ${x^n}$ which is the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

