
The coefficient of \[{{x}^{n}}\] in the expansion of \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] is
(a) \[\left( n-1 \right)\]
(b) \[{{\left( -1 \right)}^{n-1}}n\]
(c) \[{{\left( -1 \right)}^{n-1}}{{\left( n-1 \right)}^{2}}\]
(d) \[{{\left( -1 \right)}^{n}}\left( 1-n \right)\]
Answer
613.8k+ views
Hint: Expand the given expression and find the terms of the form \[a{{x}^{n}}\]. Sum the coefficients of all such terms to find the coefficient of \[{{x}^{n}}\] in the expansion of \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\]. Use the fact that \[{{\left( r+1 \right)}^{th}}\] term of the expansion of \[{{\left( a-b \right)}^{n}}\] can be written as \[{}^{n}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( -b \right)}^{r}}\].
Complete Step-by-Step solution:
We have the expression \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\]. We have to find the coefficient of \[{{x}^{n}}\] in the given expression. To do so, we will expand the given expression and add the coefficients of all the terms of the form \[a{{x}^{n}}\].
We can rewrite \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] as \[\left( 1+x \right){{\left( 1-x \right)}^{n}}={{\left( 1-x \right)}^{n}}+x{{\left( 1-x \right)}^{n}}\].
So, we have to find the coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\] and \[x{{\left( 1-x \right)}^{n}}\].
We know that \[{{\left( r+1 \right)}^{th}}\] term of the expansion of \[{{\left( a-b \right)}^{n}}\] can be written as \[{}^{n}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( -b \right)}^{r}}\].
We will firstly evaluate the coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\].
Thus, \[{{\left( n+1 \right)}^{th}}\] term of the expansion of \[{{\left( 1-x \right)}^{n}}\] is \[{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}{{\left( -x \right)}^{n}}\]. This term can be expanded to write as \[{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}{{\left( -x \right)}^{n}}=\dfrac{n!}{n!0!}1{{\left( -1 \right)}^{n}}{{x}^{n}}={{\left( -1 \right)}^{n}}{{x}^{n}}\].
So, the coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}\].
We will now evaluate the coefficient of \[{{x}^{n}}\] in the expansion of \[x{{\left( 1-x \right)}^{n}}\].
We know that any general term of \[{{\left( 1-x \right)}^{n}}\] can be written as \[{}^{n}{{C}_{r}}{{\left( 1 \right)}^{n-r}}{{\left( -x \right)}^{r}}={}^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r}}\].
Thus, any general term of \[x{{\left( 1-x \right)}^{n}}\] can be written as \[x\left( {}^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r}} \right)={}^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r+1}}\].
We have to find the coefficient of \[{{x}^{n}}\] in the expansion of \[x{{\left( 1-x \right)}^{n}}\].
Thus, we have \[r+1=n\].
\[\Rightarrow r=n-1\]
So, the \[{{\left( r+1 \right)}^{th}}={{\left( n-1+1 \right)}^{th}}={{n}^{th}}\] term of the expansion of \[x{{\left( 1-x \right)}^{n}}\] can be written as \[{}^{n}{{C}_{n-1}}{{\left( -1 \right)}^{n-1}}{{x}^{n}}\].
Thus, the coefficient of \[{{x}^{n}}\] can be written as \[{}^{n}{{C}_{n-1}}{{\left( -1 \right)}^{n-1}}=\dfrac{n!}{\left( n-1 \right)!1!}{{\left( -1 \right)}^{n-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-1 \right)!}{{\left( -1 \right)}^{n-1}}={{\left( -1 \right)}^{n-1}}n\].
We observe that coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}\] and \[x{{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n-1}}n\]. No other terms have the term \[{{x}^{n}}\]. We will now add these two coefficients of \[{{x}^{n}}\].
Thus, the coefficient of \[{{x}^{n}}\] in the expansion of \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}+{{\left( -1 \right)}^{n-1}}n={{\left( -1 \right)}^{n}}\{1-n\}={{\left( -1 \right)}^{n}}\left( 1-n \right)\].
Hence, the coefficient of \[{{x}^{n}}\] in the expansion of \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}\left( 1-n \right)\], which is option (d).
Note: To find the coefficient of \[{{x}^{n}}\], it’s not necessary to expand the given expression completely and find the terms. It’s better to simply write the general term of the expression and use it to find the coefficient of \[{{x}^{n}}\]. It’s an easier approach to solve the problem. Also, one must know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete Step-by-Step solution:
We have the expression \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\]. We have to find the coefficient of \[{{x}^{n}}\] in the given expression. To do so, we will expand the given expression and add the coefficients of all the terms of the form \[a{{x}^{n}}\].
We can rewrite \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] as \[\left( 1+x \right){{\left( 1-x \right)}^{n}}={{\left( 1-x \right)}^{n}}+x{{\left( 1-x \right)}^{n}}\].
So, we have to find the coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\] and \[x{{\left( 1-x \right)}^{n}}\].
We know that \[{{\left( r+1 \right)}^{th}}\] term of the expansion of \[{{\left( a-b \right)}^{n}}\] can be written as \[{}^{n}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( -b \right)}^{r}}\].
We will firstly evaluate the coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\].
Thus, \[{{\left( n+1 \right)}^{th}}\] term of the expansion of \[{{\left( 1-x \right)}^{n}}\] is \[{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}{{\left( -x \right)}^{n}}\]. This term can be expanded to write as \[{}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}{{\left( -x \right)}^{n}}=\dfrac{n!}{n!0!}1{{\left( -1 \right)}^{n}}{{x}^{n}}={{\left( -1 \right)}^{n}}{{x}^{n}}\].
So, the coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}\].
We will now evaluate the coefficient of \[{{x}^{n}}\] in the expansion of \[x{{\left( 1-x \right)}^{n}}\].
We know that any general term of \[{{\left( 1-x \right)}^{n}}\] can be written as \[{}^{n}{{C}_{r}}{{\left( 1 \right)}^{n-r}}{{\left( -x \right)}^{r}}={}^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r}}\].
Thus, any general term of \[x{{\left( 1-x \right)}^{n}}\] can be written as \[x\left( {}^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r}} \right)={}^{n}{{C}_{r}}{{\left( -1 \right)}^{r}}{{x}^{r+1}}\].
We have to find the coefficient of \[{{x}^{n}}\] in the expansion of \[x{{\left( 1-x \right)}^{n}}\].
Thus, we have \[r+1=n\].
\[\Rightarrow r=n-1\]
So, the \[{{\left( r+1 \right)}^{th}}={{\left( n-1+1 \right)}^{th}}={{n}^{th}}\] term of the expansion of \[x{{\left( 1-x \right)}^{n}}\] can be written as \[{}^{n}{{C}_{n-1}}{{\left( -1 \right)}^{n-1}}{{x}^{n}}\].
Thus, the coefficient of \[{{x}^{n}}\] can be written as \[{}^{n}{{C}_{n-1}}{{\left( -1 \right)}^{n-1}}=\dfrac{n!}{\left( n-1 \right)!1!}{{\left( -1 \right)}^{n-1}}=\dfrac{n\times \left( n-1 \right)!}{\left( n-1 \right)!}{{\left( -1 \right)}^{n-1}}={{\left( -1 \right)}^{n-1}}n\].
We observe that coefficient of \[{{x}^{n}}\] in the expansion of \[{{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}\] and \[x{{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n-1}}n\]. No other terms have the term \[{{x}^{n}}\]. We will now add these two coefficients of \[{{x}^{n}}\].
Thus, the coefficient of \[{{x}^{n}}\] in the expansion of \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}+{{\left( -1 \right)}^{n-1}}n={{\left( -1 \right)}^{n}}\{1-n\}={{\left( -1 \right)}^{n}}\left( 1-n \right)\].
Hence, the coefficient of \[{{x}^{n}}\] in the expansion of \[\left( 1+x \right){{\left( 1-x \right)}^{n}}\] is \[{{\left( -1 \right)}^{n}}\left( 1-n \right)\], which is option (d).
Note: To find the coefficient of \[{{x}^{n}}\], it’s not necessary to expand the given expression completely and find the terms. It’s better to simply write the general term of the expression and use it to find the coefficient of \[{{x}^{n}}\]. It’s an easier approach to solve the problem. Also, one must know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

