
The co-efficient of ${x^n}$ in ${\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)^2}$ is:
A.$\dfrac{{n\left( {{n^2} + 11} \right)}}{6}$
B.$\dfrac{{n\left( {{n^2} + 10} \right)}}{6}$
C.$\dfrac{{n\left( {{n^2} + 11} \right)}}{4}$
D.$\dfrac{{n\left( {{n^2} + 10} \right)}}{4}$
Answer
597k+ views
Hint: When we will multiply the power 1 with the power $n$, power 2 with $n - 1$ and so on, then we will get the coefficient of ${x^n}$. Write the general term of the coefficient of $x$. Simplify the general term by using the formula, sum of first $n$natural numbers is given by $\dfrac{{n\left( {n + 1} \right)}}{2}$ and sum of square of first $n$ natural numbers is $\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Complete step-by-step answer:
We are given ${\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)^2}$is equal to $\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)$
We have to find the coefficient of ${x^n}$.
When we will multiply the power 1 with the power $n$, power 2 with $n - 1$ and so on, then we will get the coefficient of ${x^n}$, which is
The coefficient of ${x^n}$ will be $n + 1\left( {n - 1} \right) + 2\left( {n - 2} \right) + .........\left( {n - 1} \right)\left( 1 \right) + n$
Now, we will simplify the expression, $n + 1\left( {n - 1} \right) + 2\left( {n - 2} \right) + .........\left( {n - 1} \right)\left( 1 \right) + n$ .
The general term for the expression can be written as, \[\sum\limits_{r = 1}^n {r\left( {n - r} \right) + \left( {2n} \right)} \]
Find the summation, using the formula for the sum of $n$ terms and ${n^2}$terms.
\[\sum\limits_{r = 1}^n {r\left( {n - r} \right) + \left( {2n} \right)} = \sum\limits_{r = 1}^n {nr - {r^2} + \left( {2n} \right)} \]
Sum of first $n$ natural numbers is given by $\dfrac{{n\left( {n + 1} \right)}}{2}$ and sum of square of first $n$ natural numbers is $\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Therefore, we have, \[\sum\limits_{r = 1}^n {nr - {r^2} + \left( {2n} \right)} = \left( n \right)\dfrac{{n\left( {n + 1} \right)}}{2} - \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 2n\]
On simplifying we get,
$
\left( n \right)\dfrac{{n\left( {n + 1} \right)}}{2} - \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \left( {2n} \right) \\
= \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {n - \left( {\dfrac{{2n + 1}}{3}} \right)} \right] + 2n \\
= \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {\dfrac{{3n - 2n - 1}}{3}} \right] + 2n \\
= \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {\dfrac{{n - 1}}{3}} \right] + 2n \\
= \dfrac{{n\left( {{n^2} - 1} \right)}}{6} + 2n \\
= \dfrac{{{n^3} - n + 12n}}{6} \\
=\dfrac{{{n^3} + 11n}}{6} \\
=\dfrac{{n\left( {{n^2} + 11} \right)}}{6} \\
$
Therefore, option A is correct.
Note: The coefficient of ${x^n}$ can be calculated using the ${a^m}\left( {{a^n}} \right) = {a^{m + n}}$. Sum of first $n$ natural numbers is given by $\dfrac{{n\left( {n + 1} \right)}}{2}$ and sum of square of first $n$ natural numbers is $\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Complete step-by-step answer:
We are given ${\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)^2}$is equal to $\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)\left( {1 + x + 2{x^2} + 3{x^3} + .... + n{x^n}} \right)$
We have to find the coefficient of ${x^n}$.
When we will multiply the power 1 with the power $n$, power 2 with $n - 1$ and so on, then we will get the coefficient of ${x^n}$, which is
The coefficient of ${x^n}$ will be $n + 1\left( {n - 1} \right) + 2\left( {n - 2} \right) + .........\left( {n - 1} \right)\left( 1 \right) + n$
Now, we will simplify the expression, $n + 1\left( {n - 1} \right) + 2\left( {n - 2} \right) + .........\left( {n - 1} \right)\left( 1 \right) + n$ .
The general term for the expression can be written as, \[\sum\limits_{r = 1}^n {r\left( {n - r} \right) + \left( {2n} \right)} \]
Find the summation, using the formula for the sum of $n$ terms and ${n^2}$terms.
\[\sum\limits_{r = 1}^n {r\left( {n - r} \right) + \left( {2n} \right)} = \sum\limits_{r = 1}^n {nr - {r^2} + \left( {2n} \right)} \]
Sum of first $n$ natural numbers is given by $\dfrac{{n\left( {n + 1} \right)}}{2}$ and sum of square of first $n$ natural numbers is $\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Therefore, we have, \[\sum\limits_{r = 1}^n {nr - {r^2} + \left( {2n} \right)} = \left( n \right)\dfrac{{n\left( {n + 1} \right)}}{2} - \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + 2n\]
On simplifying we get,
$
\left( n \right)\dfrac{{n\left( {n + 1} \right)}}{2} - \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + \left( {2n} \right) \\
= \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {n - \left( {\dfrac{{2n + 1}}{3}} \right)} \right] + 2n \\
= \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {\dfrac{{3n - 2n - 1}}{3}} \right] + 2n \\
= \dfrac{{n\left( {n + 1} \right)}}{2}\left[ {\dfrac{{n - 1}}{3}} \right] + 2n \\
= \dfrac{{n\left( {{n^2} - 1} \right)}}{6} + 2n \\
= \dfrac{{{n^3} - n + 12n}}{6} \\
=\dfrac{{{n^3} + 11n}}{6} \\
=\dfrac{{n\left( {{n^2} + 11} \right)}}{6} \\
$
Therefore, option A is correct.
Note: The coefficient of ${x^n}$ can be calculated using the ${a^m}\left( {{a^n}} \right) = {a^{m + n}}$. Sum of first $n$ natural numbers is given by $\dfrac{{n\left( {n + 1} \right)}}{2}$ and sum of square of first $n$ natural numbers is $\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

