
The coefficient of ${x^n}$ in expansion of$(1 + x){(1 - x)^n}$ is
A.$n - 1$
B.${( - 1)^{n - 1}}n$
C.${( - 1)^{n - 1}}{(n - 1)^2}$
D.${( - 1)^n}(1 - n)$
Answer
571.5k+ views
Hint: Here before solving this question we need to know the following formula to solve question: -
Binomial theorem
${(a + b)^n} = {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ...... + {}^n{C_n}{b^n}$
Since we know that combination can be written as,
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step-by-step answer:
Now, the given equation is,
$(1 + x){(1 - x)^n}$
Using binomial theorem on ${(1 - x)^n}$ we get
\[
{(1 - x)^n} = {}^n{C_0}{(1)^n} + {}^n{C_1}{(1)^{n - 1}}( - x) + {}^n{C_2}{(1)^{n - 2}}{( - x)^2} + {}^n{C_3}{(1)^{n - 3}}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}(1){( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
{(1 - x)^n} = {}^n{C_0} + {}^n{C_1}( - x) + {}^n{C_2}{( - x)^2} + {}^n{C_3}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}{( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
\]
Writing combination formula
\[
{(1 - x)^n} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} + \dfrac{{n!}}{{1!\left( {n - 1} \right)!}}( - x) + \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}({x^2}) + \dfrac{{n!}}{{3!\left( {n - 3} \right)!}}( - {x^3}) + \,...... + \dfrac{{n!}}{{(n - 1)!1!}}{( - x)^{n - 1}} \\
+ \dfrac{{n!}}{{\left( {n - n} \right)!0!}}{( - x)^n} \\
\]
Further simplifying
\[{(1 - x)^n} = 1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n}\]
Further given equation can be simplified as,
$(1 + x){(1 - x)^n} = (1 + x)(1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n})$
See, now we consider only that terms that contain ${x^n}$ and that is
$
1 \times {( - x)^n} + x \times n{( - x)^{n - 1}} \\
{( - x)^n}(1 - n) \\
{( - 1)^n}(1 - n){x^n} \\
$
Thus, we found that the coefficient is \[{( - 1)^n}(1 - n)\]
So, the correct answer is “Option D”.
Note: In question of binomial expansion there are two major sources of concern.
When there is a negative operator the odd exponents will have negative coefficient. While substituting the formula we must not get confused with the permutation formula as there is very little difference between the two.
Binomial theorem
${(a + b)^n} = {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ...... + {}^n{C_n}{b^n}$
Since we know that combination can be written as,
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step-by-step answer:
Now, the given equation is,
$(1 + x){(1 - x)^n}$
Using binomial theorem on ${(1 - x)^n}$ we get
\[
{(1 - x)^n} = {}^n{C_0}{(1)^n} + {}^n{C_1}{(1)^{n - 1}}( - x) + {}^n{C_2}{(1)^{n - 2}}{( - x)^2} + {}^n{C_3}{(1)^{n - 3}}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}(1){( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
{(1 - x)^n} = {}^n{C_0} + {}^n{C_1}( - x) + {}^n{C_2}{( - x)^2} + {}^n{C_3}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}{( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
\]
Writing combination formula
\[
{(1 - x)^n} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} + \dfrac{{n!}}{{1!\left( {n - 1} \right)!}}( - x) + \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}({x^2}) + \dfrac{{n!}}{{3!\left( {n - 3} \right)!}}( - {x^3}) + \,...... + \dfrac{{n!}}{{(n - 1)!1!}}{( - x)^{n - 1}} \\
+ \dfrac{{n!}}{{\left( {n - n} \right)!0!}}{( - x)^n} \\
\]
Further simplifying
\[{(1 - x)^n} = 1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n}\]
Further given equation can be simplified as,
$(1 + x){(1 - x)^n} = (1 + x)(1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n})$
See, now we consider only that terms that contain ${x^n}$ and that is
$
1 \times {( - x)^n} + x \times n{( - x)^{n - 1}} \\
{( - x)^n}(1 - n) \\
{( - 1)^n}(1 - n){x^n} \\
$
Thus, we found that the coefficient is \[{( - 1)^n}(1 - n)\]
So, the correct answer is “Option D”.
Note: In question of binomial expansion there are two major sources of concern.
When there is a negative operator the odd exponents will have negative coefficient. While substituting the formula we must not get confused with the permutation formula as there is very little difference between the two.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

