
The coefficient of ${x^n}$ in expansion of$(1 + x){(1 - x)^n}$ is
A.$n - 1$
B.${( - 1)^{n - 1}}n$
C.${( - 1)^{n - 1}}{(n - 1)^2}$
D.${( - 1)^n}(1 - n)$
Answer
586.5k+ views
Hint: Here before solving this question we need to know the following formula to solve question: -
Binomial theorem
${(a + b)^n} = {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ...... + {}^n{C_n}{b^n}$
Since we know that combination can be written as,
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step-by-step answer:
Now, the given equation is,
$(1 + x){(1 - x)^n}$
Using binomial theorem on ${(1 - x)^n}$ we get
\[
{(1 - x)^n} = {}^n{C_0}{(1)^n} + {}^n{C_1}{(1)^{n - 1}}( - x) + {}^n{C_2}{(1)^{n - 2}}{( - x)^2} + {}^n{C_3}{(1)^{n - 3}}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}(1){( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
{(1 - x)^n} = {}^n{C_0} + {}^n{C_1}( - x) + {}^n{C_2}{( - x)^2} + {}^n{C_3}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}{( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
\]
Writing combination formula
\[
{(1 - x)^n} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} + \dfrac{{n!}}{{1!\left( {n - 1} \right)!}}( - x) + \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}({x^2}) + \dfrac{{n!}}{{3!\left( {n - 3} \right)!}}( - {x^3}) + \,...... + \dfrac{{n!}}{{(n - 1)!1!}}{( - x)^{n - 1}} \\
+ \dfrac{{n!}}{{\left( {n - n} \right)!0!}}{( - x)^n} \\
\]
Further simplifying
\[{(1 - x)^n} = 1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n}\]
Further given equation can be simplified as,
$(1 + x){(1 - x)^n} = (1 + x)(1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n})$
See, now we consider only that terms that contain ${x^n}$ and that is
$
1 \times {( - x)^n} + x \times n{( - x)^{n - 1}} \\
{( - x)^n}(1 - n) \\
{( - 1)^n}(1 - n){x^n} \\
$
Thus, we found that the coefficient is \[{( - 1)^n}(1 - n)\]
So, the correct answer is “Option D”.
Note: In question of binomial expansion there are two major sources of concern.
When there is a negative operator the odd exponents will have negative coefficient. While substituting the formula we must not get confused with the permutation formula as there is very little difference between the two.
Binomial theorem
${(a + b)^n} = {}^n{C_0}{a^n}{b^0} + {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} + ...... + {}^n{C_n}{b^n}$
Since we know that combination can be written as,
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step-by-step answer:
Now, the given equation is,
$(1 + x){(1 - x)^n}$
Using binomial theorem on ${(1 - x)^n}$ we get
\[
{(1 - x)^n} = {}^n{C_0}{(1)^n} + {}^n{C_1}{(1)^{n - 1}}( - x) + {}^n{C_2}{(1)^{n - 2}}{( - x)^2} + {}^n{C_3}{(1)^{n - 3}}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}(1){( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
{(1 - x)^n} = {}^n{C_0} + {}^n{C_1}( - x) + {}^n{C_2}{( - x)^2} + {}^n{C_3}{( - x)^3} + \,\,......\, + {}^n{C_{n - 1}}{( - x)^{n - 1}} + {}^n{C_n}{( - x)^n} \\
\]
Writing combination formula
\[
{(1 - x)^n} = \dfrac{{n!}}{{0!\left( {n - 0} \right)!}} + \dfrac{{n!}}{{1!\left( {n - 1} \right)!}}( - x) + \dfrac{{n!}}{{2!\left( {n - 2} \right)!}}({x^2}) + \dfrac{{n!}}{{3!\left( {n - 3} \right)!}}( - {x^3}) + \,...... + \dfrac{{n!}}{{(n - 1)!1!}}{( - x)^{n - 1}} \\
+ \dfrac{{n!}}{{\left( {n - n} \right)!0!}}{( - x)^n} \\
\]
Further simplifying
\[{(1 - x)^n} = 1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n}\]
Further given equation can be simplified as,
$(1 + x){(1 - x)^n} = (1 + x)(1 - nx + \dfrac{{n(n - 1)}}{2}{x^2} - \dfrac{{n(n - 1)(n - 2)}}{6}{x^3} + \,.......\, + n{( - x)^{n - 1}} + {( - x)^n})$
See, now we consider only that terms that contain ${x^n}$ and that is
$
1 \times {( - x)^n} + x \times n{( - x)^{n - 1}} \\
{( - x)^n}(1 - n) \\
{( - 1)^n}(1 - n){x^n} \\
$
Thus, we found that the coefficient is \[{( - 1)^n}(1 - n)\]
So, the correct answer is “Option D”.
Note: In question of binomial expansion there are two major sources of concern.
When there is a negative operator the odd exponents will have negative coefficient. While substituting the formula we must not get confused with the permutation formula as there is very little difference between the two.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

