
The coefficient of \[{x^n}\] in expansion of \[(1 + x){(1 - x)^n}\] is
(A) (n-1)
(B)\[{( - 1)^n}(1 - n)\]
(C) \[{( - 1)^{n - 1}}{(n - 1)^2}\]
(D)\[{( - 1)^{n - 1}}n\]
If the coefficient of \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion \[{(1 + y)^m}\] are in A.P, then, m and r satisfy the equation-
(A)\[{m^2} - m(4r - 1) + 4{r^2} + 2 = 0\]
(B) \[{m^2} - m(4r + 1) + 4{r^2} - 2 = 0\]
(C) \[{m^2} - m(4r + 1) + 4{r^2} + 2 = 0\]
(D) \[{m^2} - m(4r - 1) + 4{r^2} - 2 = 0\]
Answer
582.9k+ views
Hint:Here we are going to find the coefficient of \[{x^n}\] using the expansion of the given binomial equation.
Initially we will expand the binomial expansion and multiply it with (1+x) and then find the final coefficient required.
Formula used:The Binomial Theorem states that, where n is a positive integer,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {^n{C_k}{x^{n - k}}{y^k}} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......\]
Complete step-by-step answer:
We have to find out the coefficient of \[{x^n}\] in expansion of\[(1 + x){(1 - x)^n}\] .
From Binomial theorem we have,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {^n{C_k}{x^{n - k}}{y^k}} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......\]
Let us put x=1, y=-x in the above equation and apply binomial theorem to get the expansion of \[{(1 - x)^n}\]
\[{(1 - x)^n} = \sum\limits_{k = 0}^n {^n{C_k}{{(1)}^{n - k}}{{( - x)}^k}} \]
And on expanding the summation in the above equation we get,\[{(1 - x)^n} = 1{ + ^n}{C_1}{(1)^{n - 1}}( - x){ + ^n}{C_2}{(1)^{n - 2}}{( - x)^2} + ......{ + ^n}{C_{n - 2}}{(1)^{n - (n - 2)}}{( - x)^{n - 2}}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}{( - x)^{n - 1}} + {( - x)^n}\]Thus we can see from expansion of \[(1 + x){(1 - x)^n}\]
\[(1 + x){(1 - x)^n} = 1.{(1 - x)^n} + x{(1 - x)^n}\]
Let us use the binomial expansion so that we get,
\[
(1 + x){(1 - x)^n} \\
= 1.\{ 1{ + ^n}{C_1}{(1)^{n - 1}}( - x){ + ^n}{C_2}{(1)^{n - 2}}{( - x)^2} + ......{ + ^n}{C_{n - 2}}{(1)^{n - (n - 2)}}1.{( - x)^{n - 2}}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - x)^{n - 1}} + {( - x)^n}\} \\
+ x\{ 1{ + ^n}{C_1}{(1)^{n - 1}}( - x){ + ^n}{C_2}{(1)^{n - 2}}{( - x)^2} + ......{ + ^n}{C_{n - 2}}{(1)^{n - (n - 2)}}1.{( - x)^{n - 2}}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - x)^{n - 1}} + {( - x)^n}\} \\
\]
The coefficient of \[{x^n}\] in expansion of \[(1 + x){(1 - x)^n}\]is
\[{( - 1)^n}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - 1)^{n - 1}}\]
Let us solve using the combination formula we get,
\[{( - 1)^n}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - 1)^{n - 1}} = {( - 1)^n} + \dfrac{{n!}}{{(n - 1)!(n - n + 1)!}}1.{( - 1)^{n - 1}}\]
On further simplifications using factorial we get
\[{( - 1)^n} + \dfrac{{n(n - 1)!}}{{(n - 1)!.1}}1.{( - 1)^{n - 1}} = {( - 1)^{n - 1}}( - 1 + n)\]
We further modify it to find the answer,
\[{( - 1)^n}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - 1)^{n - 1}} = {( - 1)^n}(1 - n)\]
Hence, (B) is the correct option.
We have to find out the coefficient of \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion\[{(1 + y)^m}\].
From Binomial theorem we have,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {^n{C_k}{x^{n - k}}{y^k}} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......\]
Let us put x=1, n=m and apply binomial theorem to get the expansion of \[{(1 + y)^m}\]
\[\begin{gathered}
{(1 + y)^m} = \sum\limits_{k = 0}^m {^m{C_k}{1^{m - k}}{y^k}} \\
= 1{ + ^m}{C_1}{1^{m - 1}}y{ + ^m}{C_2}{1^{m - 2}}{y^2} + {......^m}{C_{r - 1}}{1^{m - (r - 1)}}{y^{r - 1}}{ + ^m}{C_r}{1^{m - r}}{y^r}{ + ^m}{C_{r + 1}}{1^{m - (r + 1)}}{y^{r + 1}} + .... \\
\end{gathered} \]
The coefficient of \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion \[{(1 + y)^m}\]are
\[^m{C_{r - 1}}{,^m}{C_r}{,^m}{C_{r + 1}}\]
It is given that, \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion \[{(1 + y)^m}\]are in A.P
So, we get,
\[\dfrac{{^m{C_{r + 1}}{ + ^m}{C_{r - 1}}}}{2}{ = ^m}{C_r}\]
Rearrange the above equation we get,
\[\dfrac{{^m{C_{r + 1}}{ + ^m}{C_{r - 1}}}}{{^m{C_r}}} = 2\]
Let us use the combination formula so that we get,
\[\dfrac{{\dfrac{{m!}}{{(r + 1)!(m - r - 1)!}}}}{{\dfrac{{m!}}{{r!(m - r)!}}}} + \dfrac{{\dfrac{{m!}}{{(r - 1)!(m - r + 1)!}}}}{{\dfrac{{m!}}{{r!(m - r)!}}}} = 2\]
Further solving of the above equation will lead to\[\dfrac{{m!}}{{(r + 1)!(m - r - 1)!}} \times \dfrac{{r!(m - r)!}}{{m!}} + \dfrac{{m!}}{{(r - 1)!(m - r + 1)!}} \times \dfrac{{r!(m - r)!}}{{m!}} = 2\]
On solving the factorials we get,
\[\dfrac{{m - r}}{{r + 1}} + \dfrac{r}{{m - r + 1}} = 2\]
Let us solve the above equation to get the required answer,
\[\dfrac{{m - r}}{{r + 1}} = 2 - \dfrac{r}{{m - r + 1}}\]
\[\dfrac{{m - r}}{{r + 1}} = \dfrac{{2m - 2r + 2 - r}}{{m - r + 1}}\]
\[{m^2} - mr + m - mr + {r^2} - r = 2mr - 3{r^2} + 2r + 2m - 3r + 2\]
On solving and regrouping the above equation, we get,
\[{m^2} - m(4r + 1) + 4{r^2} - 2 = 0\]
Hence, (B) is the correct option.
Note:
A combination is a grouping or subset of items.
For a combination,
\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by n! And defined by n! = n(n-1)(n-2)(n-3)(n-4)…….2.1
Initially we will expand the binomial expansion and multiply it with (1+x) and then find the final coefficient required.
Formula used:The Binomial Theorem states that, where n is a positive integer,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {^n{C_k}{x^{n - k}}{y^k}} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......\]
Complete step-by-step answer:
We have to find out the coefficient of \[{x^n}\] in expansion of\[(1 + x){(1 - x)^n}\] .
From Binomial theorem we have,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {^n{C_k}{x^{n - k}}{y^k}} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......\]
Let us put x=1, y=-x in the above equation and apply binomial theorem to get the expansion of \[{(1 - x)^n}\]
\[{(1 - x)^n} = \sum\limits_{k = 0}^n {^n{C_k}{{(1)}^{n - k}}{{( - x)}^k}} \]
And on expanding the summation in the above equation we get,\[{(1 - x)^n} = 1{ + ^n}{C_1}{(1)^{n - 1}}( - x){ + ^n}{C_2}{(1)^{n - 2}}{( - x)^2} + ......{ + ^n}{C_{n - 2}}{(1)^{n - (n - 2)}}{( - x)^{n - 2}}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}{( - x)^{n - 1}} + {( - x)^n}\]Thus we can see from expansion of \[(1 + x){(1 - x)^n}\]
\[(1 + x){(1 - x)^n} = 1.{(1 - x)^n} + x{(1 - x)^n}\]
Let us use the binomial expansion so that we get,
\[
(1 + x){(1 - x)^n} \\
= 1.\{ 1{ + ^n}{C_1}{(1)^{n - 1}}( - x){ + ^n}{C_2}{(1)^{n - 2}}{( - x)^2} + ......{ + ^n}{C_{n - 2}}{(1)^{n - (n - 2)}}1.{( - x)^{n - 2}}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - x)^{n - 1}} + {( - x)^n}\} \\
+ x\{ 1{ + ^n}{C_1}{(1)^{n - 1}}( - x){ + ^n}{C_2}{(1)^{n - 2}}{( - x)^2} + ......{ + ^n}{C_{n - 2}}{(1)^{n - (n - 2)}}1.{( - x)^{n - 2}}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - x)^{n - 1}} + {( - x)^n}\} \\
\]
The coefficient of \[{x^n}\] in expansion of \[(1 + x){(1 - x)^n}\]is
\[{( - 1)^n}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - 1)^{n - 1}}\]
Let us solve using the combination formula we get,
\[{( - 1)^n}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - 1)^{n - 1}} = {( - 1)^n} + \dfrac{{n!}}{{(n - 1)!(n - n + 1)!}}1.{( - 1)^{n - 1}}\]
On further simplifications using factorial we get
\[{( - 1)^n} + \dfrac{{n(n - 1)!}}{{(n - 1)!.1}}1.{( - 1)^{n - 1}} = {( - 1)^{n - 1}}( - 1 + n)\]
We further modify it to find the answer,
\[{( - 1)^n}{ + ^n}{C_{n - 1}}{(1)^{n - (n - 1)}}1.{( - 1)^{n - 1}} = {( - 1)^n}(1 - n)\]
Hence, (B) is the correct option.
We have to find out the coefficient of \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion\[{(1 + y)^m}\].
From Binomial theorem we have,
\[{(x + y)^n} = \sum\limits_{k = 0}^n {^n{C_k}{x^{n - k}}{y^k}} = {x^n}{ + ^n}{C_1}{x^{n - 1}}y{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......\]
Let us put x=1, n=m and apply binomial theorem to get the expansion of \[{(1 + y)^m}\]
\[\begin{gathered}
{(1 + y)^m} = \sum\limits_{k = 0}^m {^m{C_k}{1^{m - k}}{y^k}} \\
= 1{ + ^m}{C_1}{1^{m - 1}}y{ + ^m}{C_2}{1^{m - 2}}{y^2} + {......^m}{C_{r - 1}}{1^{m - (r - 1)}}{y^{r - 1}}{ + ^m}{C_r}{1^{m - r}}{y^r}{ + ^m}{C_{r + 1}}{1^{m - (r + 1)}}{y^{r + 1}} + .... \\
\end{gathered} \]
The coefficient of \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion \[{(1 + y)^m}\]are
\[^m{C_{r - 1}}{,^m}{C_r}{,^m}{C_{r + 1}}\]
It is given that, \[{r^{th}},{(r + 1)^{th}}and{(r + 2)^{th}}\] terms in the binomial expansion \[{(1 + y)^m}\]are in A.P
So, we get,
\[\dfrac{{^m{C_{r + 1}}{ + ^m}{C_{r - 1}}}}{2}{ = ^m}{C_r}\]
Rearrange the above equation we get,
\[\dfrac{{^m{C_{r + 1}}{ + ^m}{C_{r - 1}}}}{{^m{C_r}}} = 2\]
Let us use the combination formula so that we get,
\[\dfrac{{\dfrac{{m!}}{{(r + 1)!(m - r - 1)!}}}}{{\dfrac{{m!}}{{r!(m - r)!}}}} + \dfrac{{\dfrac{{m!}}{{(r - 1)!(m - r + 1)!}}}}{{\dfrac{{m!}}{{r!(m - r)!}}}} = 2\]
Further solving of the above equation will lead to\[\dfrac{{m!}}{{(r + 1)!(m - r - 1)!}} \times \dfrac{{r!(m - r)!}}{{m!}} + \dfrac{{m!}}{{(r - 1)!(m - r + 1)!}} \times \dfrac{{r!(m - r)!}}{{m!}} = 2\]
On solving the factorials we get,
\[\dfrac{{m - r}}{{r + 1}} + \dfrac{r}{{m - r + 1}} = 2\]
Let us solve the above equation to get the required answer,
\[\dfrac{{m - r}}{{r + 1}} = 2 - \dfrac{r}{{m - r + 1}}\]
\[\dfrac{{m - r}}{{r + 1}} = \dfrac{{2m - 2r + 2 - r}}{{m - r + 1}}\]
\[{m^2} - mr + m - mr + {r^2} - r = 2mr - 3{r^2} + 2r + 2m - 3r + 2\]
On solving and regrouping the above equation, we get,
\[{m^2} - m(4r + 1) + 4{r^2} - 2 = 0\]
Hence, (B) is the correct option.
Note:
A combination is a grouping or subset of items.
For a combination,
\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\]
Where, factorial n is denoted by n! And defined by n! = n(n-1)(n-2)(n-3)(n-4)…….2.1
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

