
The coefficient of ${x^{50}}$ in the binomial expansion of ${\left( {1 + x} \right)^{1000}} + x{\left( {1 + x} \right)^{999}} + {x^2}{\left( {1 + x} \right)^{998}} + .......... + {x^{1000}}$ is:
$\left( a \right)\dfrac{{\left( {1000} \right)!}}{{\left( {49} \right)!\left( {951} \right)!}}$
$\left( b \right)\dfrac{{\left( {1001} \right)!}}{{\left( {51} \right)!\left( {950} \right)!}}$
$\left( c \right)\dfrac{{\left( {1000} \right)!}}{{\left( {50} \right)!\left( {950} \right)!}}$
$\left( d \right)\dfrac{{\left( {1001} \right)!}}{{\left( {50} \right)!\left( {951} \right)!}}$
Answer
595.2k+ views
Hint: In this particular question first find out that which series is formed by the given series (i.e. whether it is formed A.P, G.P or an H.P series), so after confirming which series is that, find out the number of terms in the series then the sum of the series using standard formulas G.P, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given expression
${\left( {1 + x} \right)^{1000}} + x{\left( {1 + x} \right)^{999}} + {x^2}{\left( {1 + x} \right)^{998}} + .......... + {x^{1000}}$
So as we see that the above summation forms a geometric progression summation.
With first term, a = ${\left( {1 + x} \right)^{1000}}$
Common ratio, r = $\dfrac{{x{{\left( {1 + x} \right)}^{999}}}}{{{{\left( {1 + x} \right)}^{1000}}}} = \dfrac{{{x^2}{{\left( {1 + x} \right)}^{998}}}}{{x{{\left( {1 + x} \right)}^{999}}}} = \dfrac{x}{{1 + x}}$
Now as we know that the last term ${a_n}$ of the G.P series is given as,
$ \Rightarrow {a_n} = a{r^{n - 1}}$, where n is the number of terms and last term, ${a_n} = {x^{1000}}$
Now substitute the values we have,
$ \Rightarrow {x^{1000}} = {\left( {1 + x} \right)^{1000}}{\left( {\dfrac{x}{{1 + x}}} \right)^{n - 1}}$
Now simplify it we have,
$ \Rightarrow {\left( {\dfrac{x}{{1 + x}}} \right)^{1000}} = {\left( {\dfrac{x}{{1 + x}}} \right)^{n - 1}}$
Now on comparing we have,
1000 = n – 1
$ \Rightarrow n = 1001$
So there are 1001 terms in the given series.
Now as we know the sum of the G.P series is given as,
$ \Rightarrow {S_n} = a\dfrac{{\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$, where symbols have their usual meanings.
Now substitute the values in the above equation we have,
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1000}}\dfrac{{\left( {1 - {{\left( {\dfrac{x}{{1 + x}}} \right)}^{1001}}} \right)}}{{\left( {1 - \dfrac{x}{{1 + x}}} \right)}}\]
Now simplify it we have,
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1000}}\dfrac{{\left( {\dfrac{{{{\left( {1 + x} \right)}^{1001}} - {x^{1001}}}}{{{{\left( {1 + x} \right)}^{1001}}}}} \right)}}{{\left( {\dfrac{1}{{1 + x}}} \right)}}\]
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1001}}\dfrac{{{{\left( {1 + x} \right)}^{1001}} - {x^{1001}}}}{{{{\left( {1 + x} \right)}^{1001}}}}\]
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1001}} - {x^{1001}}\]
So this is the sum of the G.P series.
Now as we know that the coefficient of ${x^r}$ term in the Binomial expansion of ${\left( {1 + x} \right)^n}$ is ${}^n{C_r}$.
As, ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ..... + {}^n{C_r}{x^r} + ..... + {}^n{C_n}{x^n}$
So the coefficient of ${x^{50}}$ term in the Binomial expansion of ${\left( {1 + x} \right)^{1001}}$ is ${}^{1001}{C_{50}}$.
So the coefficient of ${x^{50}}$ term in the Binomial expansion of (\[{\left( {1 + x} \right)^{1001}} - {x^{1001}}\]) is ${}^{1001}{C_{50}}$.
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property we have,
$ \Rightarrow {}^{1001}{C_{50}} = \dfrac{{\left( {1001} \right)!}}{{\left( {50} \right)!\left( {1001 - 50} \right)!}}$
$ \Rightarrow {}^{1001}{C_{50}} = \dfrac{{\left( {1001} \right)!}}{{\left( {50} \right)!\left( {951} \right)!}}$
So this is the required answer.
Hence option (D) is the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember always recall the standard formulas of G.P, such as, ${S_n} = a\dfrac{{\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$, where symbols have their usual meanings, and then always recall that the coefficient of ${x^r}$ term in the Binomial expansion of ${\left( {1 + x} \right)^n}$ is ${}^n{C_r}$.
Complete step-by-step answer:
Given expression
${\left( {1 + x} \right)^{1000}} + x{\left( {1 + x} \right)^{999}} + {x^2}{\left( {1 + x} \right)^{998}} + .......... + {x^{1000}}$
So as we see that the above summation forms a geometric progression summation.
With first term, a = ${\left( {1 + x} \right)^{1000}}$
Common ratio, r = $\dfrac{{x{{\left( {1 + x} \right)}^{999}}}}{{{{\left( {1 + x} \right)}^{1000}}}} = \dfrac{{{x^2}{{\left( {1 + x} \right)}^{998}}}}{{x{{\left( {1 + x} \right)}^{999}}}} = \dfrac{x}{{1 + x}}$
Now as we know that the last term ${a_n}$ of the G.P series is given as,
$ \Rightarrow {a_n} = a{r^{n - 1}}$, where n is the number of terms and last term, ${a_n} = {x^{1000}}$
Now substitute the values we have,
$ \Rightarrow {x^{1000}} = {\left( {1 + x} \right)^{1000}}{\left( {\dfrac{x}{{1 + x}}} \right)^{n - 1}}$
Now simplify it we have,
$ \Rightarrow {\left( {\dfrac{x}{{1 + x}}} \right)^{1000}} = {\left( {\dfrac{x}{{1 + x}}} \right)^{n - 1}}$
Now on comparing we have,
1000 = n – 1
$ \Rightarrow n = 1001$
So there are 1001 terms in the given series.
Now as we know the sum of the G.P series is given as,
$ \Rightarrow {S_n} = a\dfrac{{\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$, where symbols have their usual meanings.
Now substitute the values in the above equation we have,
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1000}}\dfrac{{\left( {1 - {{\left( {\dfrac{x}{{1 + x}}} \right)}^{1001}}} \right)}}{{\left( {1 - \dfrac{x}{{1 + x}}} \right)}}\]
Now simplify it we have,
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1000}}\dfrac{{\left( {\dfrac{{{{\left( {1 + x} \right)}^{1001}} - {x^{1001}}}}{{{{\left( {1 + x} \right)}^{1001}}}}} \right)}}{{\left( {\dfrac{1}{{1 + x}}} \right)}}\]
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1001}}\dfrac{{{{\left( {1 + x} \right)}^{1001}} - {x^{1001}}}}{{{{\left( {1 + x} \right)}^{1001}}}}\]
\[ \Rightarrow {S_n} = {\left( {1 + x} \right)^{1001}} - {x^{1001}}\]
So this is the sum of the G.P series.
Now as we know that the coefficient of ${x^r}$ term in the Binomial expansion of ${\left( {1 + x} \right)^n}$ is ${}^n{C_r}$.
As, ${\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ..... + {}^n{C_r}{x^r} + ..... + {}^n{C_n}{x^n}$
So the coefficient of ${x^{50}}$ term in the Binomial expansion of ${\left( {1 + x} \right)^{1001}}$ is ${}^{1001}{C_{50}}$.
So the coefficient of ${x^{50}}$ term in the Binomial expansion of (\[{\left( {1 + x} \right)^{1001}} - {x^{1001}}\]) is ${}^{1001}{C_{50}}$.
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property we have,
$ \Rightarrow {}^{1001}{C_{50}} = \dfrac{{\left( {1001} \right)!}}{{\left( {50} \right)!\left( {1001 - 50} \right)!}}$
$ \Rightarrow {}^{1001}{C_{50}} = \dfrac{{\left( {1001} \right)!}}{{\left( {50} \right)!\left( {951} \right)!}}$
So this is the required answer.
Hence option (D) is the correct answer.
Note:Whenever we face such types of questions the key concept we have to remember always recall the standard formulas of G.P, such as, ${S_n} = a\dfrac{{\left( {1 - {r^n}} \right)}}{{\left( {1 - r} \right)}}$, where symbols have their usual meanings, and then always recall that the coefficient of ${x^r}$ term in the Binomial expansion of ${\left( {1 + x} \right)^n}$ is ${}^n{C_r}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

