
The coefficient of ${{x}^{17}}$ in the expansion of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ is
\[\begin{align}
& \text{A}.-\text{171} \\
& \text{B}.\text{ 171} \\
& \text{C}.\text{ 153} \\
& \text{D}.-\text{153} \\
\end{align}\]
Answer
589.2k+ views
Hint: To solve this question, we will first consider $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ and see what is highest power of x in this and then observe similarly that what will be coefficient of x in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ that can be obtained by putting x = 0 and adding terms of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$. Similarly, we can calculate coefficient of ${{x}^{2}}$ in term $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$. Finally, following the same process we will calculate coefficient of ${{x}^{17}}$ in \[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)\]
Complete step-by-step answer:
Given, we have \[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)\]
To have a better understanding of the solution, first consider; $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ then expanding $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ by opening the bracket, we get:
\[\begin{align}
& \left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)=x\left( x-2 \right)-1\left( x-2 \right) \\
& \Rightarrow {{x}^{2}}-2x-x+2 \\
& \Rightarrow {{x}^{2}}-3x+2\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
So, we observe that highest power of x in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ is 2 and ${{x}^{1}}$ can be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ and adding them \[\text{Coefficient of }{{x}^{1}}=\left( -1 \right)+\left( -2 \right)=-3\] which is correct.
As we had two terms of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ multiplied, so highest power of x is 2.
Now, consider $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$
As the value of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)={{x}^{2}}-3x+2$ by equation (i) then substituting this value in above we get:
\[\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)\left( x-3 \right)=\left( {{x}^{2}}-3x+2 \right)\left( x-3 \right)\]
Opening the bracket to solve further, we get:
\[\begin{align}
& \left( {{x}^{2}}-3x+2 \right)\left( x-3 \right)=x\left( {{x}^{2}}-3x+2 \right)-3\left( {{x}^{2}}-3x+2 \right) \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+2x-3{{x}^{2}}+9x-6 \\
& \Rightarrow {{x}^{3}}-6{{x}^{2}}+11x-6 \\
\end{align}\]
Therefore, the highest power of x in the expression $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ is 3.
This was so as we had three terms $\left( \text{x}-\text{1} \right),\left( \text{x}-\text{2} \right)\text{ and }\left( x-3 \right)$ multiplied, then the coefficient of ${{x}^{2}}$ would be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ and adding them.
Similarly, if we multiply $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)\left( x-4 \right)$ then highest power of x would be 4 and coefficient of ${{x}^{3}}$ can be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ and adding them.
Similarly, if we multiply $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)\left( x-4 \right)\left( x-5 \right)$ then the highest power of x would be 5.
To get the coefficient of ${{x}^{17}}$ we need the adding of terms of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ and that too by putting x = 0.
Also, as we only need coefficient of ${{x}^{17}}$ and not the value of ${{x}^{17}}$ then we can easily obtain this by putting x = 0 in the expression and adding them we get, exact coefficient of ${{x}^{17}}$
\[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)\]
Therefore, substituting x = 0 in above and adding all, we get:
\[\begin{align}
& \left( x-1 \right)+\left( x-2 \right)+\left( x-3 \right)+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+\left( x-18 \right) \\
& \left( -1 \right)+\left( -2 \right)+\left( -3 \right)+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+\left( -18 \right) \\
& \left( -1 \right)-2-3-4-\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }-18 \\
& -\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right) \\
\end{align}\]
This is obtained by taking (-1) common.
Now, we have a formula of sum of n term which is given as:
\[1+2+3+4+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+n=\dfrac{n\left( n+1 \right)}{2}\]
Substituting n = 18 in above formula to obtain $-\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right)$ we get:
\[\begin{align}
& -\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right)=-\left( \dfrac{18\left( 18+1 \right)}{2} \right) \\
& \Rightarrow -9\left( 19 \right) \\
& \Rightarrow -171 \\
\end{align}\]
Therefore, the coefficient of ${{x}^{17}}$ in the expansion of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ is -171.
So, the correct answer is “Option A”.
Note: Another method to solve this question is:
We are given $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ then as this equation has maximum power as 18, then sum of roots can be obtained by putting \[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)=0\]
Therefore, roots are \[x=1,2,3,4,5,6,7,8,9,........18\]
Hence, there are 18 roots.
When equation is of the form $a{{x}^{2}}+bx+c$ then formula of sum of roots is \[\Rightarrow \dfrac{-b}{a}=\dfrac{-\text{coefficient of x}}{\text{coefficient of }{{\text{x}}^{2}}}\]
Here, we have 18 degree equation, then sum of roots
\[\Rightarrow \dfrac{-\text{coefficient of }{{\text{x}}^{17}}}{\text{coefficient of }{{\text{x}}^{18}}}\]
Clearly, the coefficient of ${{x}^{18}}$ would be 1 as all variable x has coefficient 1.
\[1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18=\dfrac{-\text{coefficient of }{{\text{x}}^{17}}}{1}\]
Using $1+2+\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+n=\dfrac{n\left( n+1 \right)}{2}$ in above we get:
\[\begin{align}
& -\text{coefficient of }{{\text{x}}^{17}}=\dfrac{18\left( 18+1 \right)}{2} \\
& \text{coefficient of }{{\text{x}}^{17}}=-9\times 17 \\
& \text{coefficient of }{{\text{x}}^{17}}=-171 \\
\end{align}\]
Hence, the coefficient of ${{x}^{17}}$ is -171 which is option A.
Complete step-by-step answer:
Given, we have \[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)\]
To have a better understanding of the solution, first consider; $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ then expanding $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ by opening the bracket, we get:
\[\begin{align}
& \left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)=x\left( x-2 \right)-1\left( x-2 \right) \\
& \Rightarrow {{x}^{2}}-2x-x+2 \\
& \Rightarrow {{x}^{2}}-3x+2\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
So, we observe that highest power of x in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ is 2 and ${{x}^{1}}$ can be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ and adding them \[\text{Coefficient of }{{x}^{1}}=\left( -1 \right)+\left( -2 \right)=-3\] which is correct.
As we had two terms of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)$ multiplied, so highest power of x is 2.
Now, consider $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$
As the value of $\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)={{x}^{2}}-3x+2$ by equation (i) then substituting this value in above we get:
\[\left( \text{x}-\text{1} \right)\text{ }\left( \text{x}-\text{2} \right)\left( x-3 \right)=\left( {{x}^{2}}-3x+2 \right)\left( x-3 \right)\]
Opening the bracket to solve further, we get:
\[\begin{align}
& \left( {{x}^{2}}-3x+2 \right)\left( x-3 \right)=x\left( {{x}^{2}}-3x+2 \right)-3\left( {{x}^{2}}-3x+2 \right) \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+2x-3{{x}^{2}}+9x-6 \\
& \Rightarrow {{x}^{3}}-6{{x}^{2}}+11x-6 \\
\end{align}\]
Therefore, the highest power of x in the expression $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ is 3.
This was so as we had three terms $\left( \text{x}-\text{1} \right),\left( \text{x}-\text{2} \right)\text{ and }\left( x-3 \right)$ multiplied, then the coefficient of ${{x}^{2}}$ would be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ and adding them.
Similarly, if we multiply $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)\left( x-4 \right)$ then highest power of x would be 4 and coefficient of ${{x}^{3}}$ can be obtained by putting x = 0 in $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)$ and adding them.
Similarly, if we multiply $\left( \text{x}-\text{1} \right)\left( \text{x}-\text{2} \right)\left( x-3 \right)\left( x-4 \right)\left( x-5 \right)$ then the highest power of x would be 5.
To get the coefficient of ${{x}^{17}}$ we need the adding of terms of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ and that too by putting x = 0.
Also, as we only need coefficient of ${{x}^{17}}$ and not the value of ${{x}^{17}}$ then we can easily obtain this by putting x = 0 in the expression and adding them we get, exact coefficient of ${{x}^{17}}$
\[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)\]
Therefore, substituting x = 0 in above and adding all, we get:
\[\begin{align}
& \left( x-1 \right)+\left( x-2 \right)+\left( x-3 \right)+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+\left( x-18 \right) \\
& \left( -1 \right)+\left( -2 \right)+\left( -3 \right)+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+\left( -18 \right) \\
& \left( -1 \right)-2-3-4-\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }-18 \\
& -\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right) \\
\end{align}\]
This is obtained by taking (-1) common.
Now, we have a formula of sum of n term which is given as:
\[1+2+3+4+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+n=\dfrac{n\left( n+1 \right)}{2}\]
Substituting n = 18 in above formula to obtain $-\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right)$ we get:
\[\begin{align}
& -\left( 1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18 \right)=-\left( \dfrac{18\left( 18+1 \right)}{2} \right) \\
& \Rightarrow -9\left( 19 \right) \\
& \Rightarrow -171 \\
\end{align}\]
Therefore, the coefficient of ${{x}^{17}}$ in the expansion of $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ is -171.
So, the correct answer is “Option A”.
Note: Another method to solve this question is:
We are given $\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)$ then as this equation has maximum power as 18, then sum of roots can be obtained by putting \[\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\left( x-18 \right)=0\]
Therefore, roots are \[x=1,2,3,4,5,6,7,8,9,........18\]
Hence, there are 18 roots.
When equation is of the form $a{{x}^{2}}+bx+c$ then formula of sum of roots is \[\Rightarrow \dfrac{-b}{a}=\dfrac{-\text{coefficient of x}}{\text{coefficient of }{{\text{x}}^{2}}}\]
Here, we have 18 degree equation, then sum of roots
\[\Rightarrow \dfrac{-\text{coefficient of }{{\text{x}}^{17}}}{\text{coefficient of }{{\text{x}}^{18}}}\]
Clearly, the coefficient of ${{x}^{18}}$ would be 1 as all variable x has coefficient 1.
\[1+2+3+\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+18=\dfrac{-\text{coefficient of }{{\text{x}}^{17}}}{1}\]
Using $1+2+\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }+n=\dfrac{n\left( n+1 \right)}{2}$ in above we get:
\[\begin{align}
& -\text{coefficient of }{{\text{x}}^{17}}=\dfrac{18\left( 18+1 \right)}{2} \\
& \text{coefficient of }{{\text{x}}^{17}}=-9\times 17 \\
& \text{coefficient of }{{\text{x}}^{17}}=-171 \\
\end{align}\]
Hence, the coefficient of ${{x}^{17}}$ is -171 which is option A.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

