
The coefficient of x in the expansion of \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}\] is?
A \[a + b + c\]
B \[a - b – c\]
C \[- a + b + c\]
D \[a - b + c\]
Answer
586.5k+ views
Hint: In this problem, first we need to find the binomial expansion of individual expressions. Now, collect the coefficient of \[x\] from the binomial expansion. The binomial expansion is the algebraic expansion of powers of a binomial.
Complete step-by-step answer:
The binomial expansion of the expressions \[{\left( {1 - ax} \right)^{ - 1}}\], \[{\left( {1 - bx} \right)^{ - 1}}\] and \[{\left( {1 - cx} \right)^{ - 1}}\] are shown below.
\[\begin{gathered}
{\left( {1 - ax} \right)^{ - 1}} = 1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - ax} \right)^2} + \ldots \\
{\left( {1 - bx} \right)^{ - 1}} = 1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - bx} \right)^2} + \ldots \\
{\left( {1 - cx} \right)^{ - 1}} = 1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - cx} \right)^2} + \ldots \\
\end{gathered}\]
Now, the coefficient of \[x\] in expression \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}\] can be calculated as shown below.
\[\begin{gathered}
\,\,\,\,\,\,{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}} \\
\Rightarrow \left( {1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - ax} \right)}^2} + \ldots } \right)\left( {1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - bx} \right)}^2} + \ldots } \right)\left( {1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - cx} \right)}^2} + \ldots } \right) \\
\end{gathered}\]
Collect the coefficient of \[x\] in the above expression.
\[\begin{gathered}
\,\,\,\,{\text{Coefficient of }}x = \left( a \right)\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( b \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\left( c \right) \\
\Rightarrow {\text{Coefficient of }}x = a + b + c \\
\end{gathered}\]
Thus, the coefficient of \[x\] is \[a + b + c\], hence, the option (A) is the correct answer.
Note: Binomial expansion is used to find the algebraic expansion of powers of a binomial.
While collecting the coefficient of \[x\], only collect those terms which are multiple of \[x\] only.
Complete step-by-step answer:
The binomial expansion of the expressions \[{\left( {1 - ax} \right)^{ - 1}}\], \[{\left( {1 - bx} \right)^{ - 1}}\] and \[{\left( {1 - cx} \right)^{ - 1}}\] are shown below.
\[\begin{gathered}
{\left( {1 - ax} \right)^{ - 1}} = 1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - ax} \right)^2} + \ldots \\
{\left( {1 - bx} \right)^{ - 1}} = 1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - bx} \right)^2} + \ldots \\
{\left( {1 - cx} \right)^{ - 1}} = 1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - cx} \right)^2} + \ldots \\
\end{gathered}\]
Now, the coefficient of \[x\] in expression \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}\] can be calculated as shown below.
\[\begin{gathered}
\,\,\,\,\,\,{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}} \\
\Rightarrow \left( {1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - ax} \right)}^2} + \ldots } \right)\left( {1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - bx} \right)}^2} + \ldots } \right)\left( {1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - cx} \right)}^2} + \ldots } \right) \\
\end{gathered}\]
Collect the coefficient of \[x\] in the above expression.
\[\begin{gathered}
\,\,\,\,{\text{Coefficient of }}x = \left( a \right)\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( b \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\left( c \right) \\
\Rightarrow {\text{Coefficient of }}x = a + b + c \\
\end{gathered}\]
Thus, the coefficient of \[x\] is \[a + b + c\], hence, the option (A) is the correct answer.
Note: Binomial expansion is used to find the algebraic expansion of powers of a binomial.
While collecting the coefficient of \[x\], only collect those terms which are multiple of \[x\] only.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

