
The coefficient of x in the expansion of \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}\] is?
A \[a + b + c\]
B \[a - b – c\]
C \[- a + b + c\]
D \[a - b + c\]
Answer
599.7k+ views
Hint: In this problem, first we need to find the binomial expansion of individual expressions. Now, collect the coefficient of \[x\] from the binomial expansion. The binomial expansion is the algebraic expansion of powers of a binomial.
Complete step-by-step answer:
The binomial expansion of the expressions \[{\left( {1 - ax} \right)^{ - 1}}\], \[{\left( {1 - bx} \right)^{ - 1}}\] and \[{\left( {1 - cx} \right)^{ - 1}}\] are shown below.
\[\begin{gathered}
{\left( {1 - ax} \right)^{ - 1}} = 1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - ax} \right)^2} + \ldots \\
{\left( {1 - bx} \right)^{ - 1}} = 1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - bx} \right)^2} + \ldots \\
{\left( {1 - cx} \right)^{ - 1}} = 1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - cx} \right)^2} + \ldots \\
\end{gathered}\]
Now, the coefficient of \[x\] in expression \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}\] can be calculated as shown below.
\[\begin{gathered}
\,\,\,\,\,\,{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}} \\
\Rightarrow \left( {1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - ax} \right)}^2} + \ldots } \right)\left( {1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - bx} \right)}^2} + \ldots } \right)\left( {1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - cx} \right)}^2} + \ldots } \right) \\
\end{gathered}\]
Collect the coefficient of \[x\] in the above expression.
\[\begin{gathered}
\,\,\,\,{\text{Coefficient of }}x = \left( a \right)\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( b \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\left( c \right) \\
\Rightarrow {\text{Coefficient of }}x = a + b + c \\
\end{gathered}\]
Thus, the coefficient of \[x\] is \[a + b + c\], hence, the option (A) is the correct answer.
Note: Binomial expansion is used to find the algebraic expansion of powers of a binomial.
While collecting the coefficient of \[x\], only collect those terms which are multiple of \[x\] only.
Complete step-by-step answer:
The binomial expansion of the expressions \[{\left( {1 - ax} \right)^{ - 1}}\], \[{\left( {1 - bx} \right)^{ - 1}}\] and \[{\left( {1 - cx} \right)^{ - 1}}\] are shown below.
\[\begin{gathered}
{\left( {1 - ax} \right)^{ - 1}} = 1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - ax} \right)^2} + \ldots \\
{\left( {1 - bx} \right)^{ - 1}} = 1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - bx} \right)^2} + \ldots \\
{\left( {1 - cx} \right)^{ - 1}} = 1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{\left( { - cx} \right)^2} + \ldots \\
\end{gathered}\]
Now, the coefficient of \[x\] in expression \[{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}}\] can be calculated as shown below.
\[\begin{gathered}
\,\,\,\,\,\,{\left( {1 - ax} \right)^{ - 1}}{\left( {1 - bx} \right)^{ - 1}}{\left( {1 - cx} \right)^{ - 1}} \\
\Rightarrow \left( {1 + ax + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - ax} \right)}^2} + \ldots } \right)\left( {1 + bx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - bx} \right)}^2} + \ldots } \right)\left( {1 + cx + \dfrac{{\left( { - 1} \right)\left( { - 2} \right)}}{{2!}}{{\left( { - cx} \right)}^2} + \ldots } \right) \\
\end{gathered}\]
Collect the coefficient of \[x\] in the above expression.
\[\begin{gathered}
\,\,\,\,{\text{Coefficient of }}x = \left( a \right)\left( 1 \right)\left( 1 \right) + \left( 1 \right)\left( b \right)\left( 1 \right) + \left( 1 \right)\left( 1 \right)\left( c \right) \\
\Rightarrow {\text{Coefficient of }}x = a + b + c \\
\end{gathered}\]
Thus, the coefficient of \[x\] is \[a + b + c\], hence, the option (A) is the correct answer.
Note: Binomial expansion is used to find the algebraic expansion of powers of a binomial.
While collecting the coefficient of \[x\], only collect those terms which are multiple of \[x\] only.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

