
The coefficient of mean deviation from the median of observations 40, 62, 54, 90, 68, 76 is-
A. 2.16
B. 0.2
C. 5
D. None of the above
Answer
584.1k+ views
Hint: The mean deviation about the median is defined as the ratio of the difference between the median and the observations in the entry and the median. Mathematically, it can be defined as-
$MD = \mathop \sum \limits_{i = 1}^n \dfrac{{\left| {M - {a_i}} \right|}}{M}$
Here M is the median and ai’s are the observations.
Complete step-by-step solution-
First we will arrange the data in ascending order, which can be written as-
40, 54, 62, 68, 76, 90
The number of entries are 6(even), so the median is the average of the ${\left( {\dfrac{{\text{n}}}{2}} \right)^{th}}\;and\;{\left( {\dfrac{{\text{n}}}{2} + 1} \right)^{th}}$ terms.
So the median is the average of the 3rd and the 4th terms.
${\text{M}} = \dfrac{{62 + 68}}{2} = 65$
Now, we will find the mean deviation using the given formula as-
$\begin{gathered}
MD = \dfrac{{\left| {40 - 65} \right| + \left| {54 - 65} \right| + \left| {62 - 65} \right| + \left| {68 - 65} \right| + \left| {76 - 65} \right| + \left| {90 - 65} \right|}}{{65}} \\
MD = \dfrac{{25 + 11 + 3 + 3 + 11 + 25}}{{65}} = \dfrac{{78}}{{65}} = 1.2 \\
\end{gathered} $
This is the required answer. The correct option is D. None of the above.
Note: The most common mistake is the application of the formula of mean deviation in the question. Students forget to use the modulus in the formula and solve the summation incorrectly, this leads to a wrong answer.
$MD = \mathop \sum \limits_{i = 1}^n \dfrac{{\left| {M - {a_i}} \right|}}{M}$
Here M is the median and ai’s are the observations.
Complete step-by-step solution-
First we will arrange the data in ascending order, which can be written as-
40, 54, 62, 68, 76, 90
The number of entries are 6(even), so the median is the average of the ${\left( {\dfrac{{\text{n}}}{2}} \right)^{th}}\;and\;{\left( {\dfrac{{\text{n}}}{2} + 1} \right)^{th}}$ terms.
So the median is the average of the 3rd and the 4th terms.
${\text{M}} = \dfrac{{62 + 68}}{2} = 65$
Now, we will find the mean deviation using the given formula as-
$\begin{gathered}
MD = \dfrac{{\left| {40 - 65} \right| + \left| {54 - 65} \right| + \left| {62 - 65} \right| + \left| {68 - 65} \right| + \left| {76 - 65} \right| + \left| {90 - 65} \right|}}{{65}} \\
MD = \dfrac{{25 + 11 + 3 + 3 + 11 + 25}}{{65}} = \dfrac{{78}}{{65}} = 1.2 \\
\end{gathered} $
This is the required answer. The correct option is D. None of the above.
Note: The most common mistake is the application of the formula of mean deviation in the question. Students forget to use the modulus in the formula and solve the summation incorrectly, this leads to a wrong answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

