
The coefficient of linear expansion of a cubical crystal along three mutually perpendicular directions is ${\alpha _1}$ ${\alpha _2}$ and ${\alpha _3}$ . What is the coefficient of cubical expansion of the crystal?
Answer
456.9k+ views
Hint: You may start with a cuboid and set the temperature to rise from ${0^ \circ }C$ to ${T^ \circ }C$ as a first step. Then you might find the linear expansion equation in all three dimensions. The volume of the solid will then be determined by taking their product. You can get an expression by expanding that expression and then ignoring the smaller terms. You may figure out the answer by comparing it to the volume expansion expression.
Complete answer:
Considering a cubical crystal structure
Let ${\alpha _1}$ ${\alpha _2}$ and ${\alpha _3}$ . be the coefficient of linear expression along the sides is ${a_1}$ ${a_2}$ and ${a_3}$.
We know for linear expansion
$a = {a_0}(1 + \alpha \Delta T)$
Where ${a_0}$ is the initial edge length
Take the temperature of the solid above to rise from ${0^ \circ }C$ to ${T^ \circ }C$
\[\Delta T = T - 0 = T\]
So for all the edges we have
\[{a_1}\prime = {a_1}(1 + {\alpha _1}T)\]
\[{a_2}\prime = {a_2}(1 + {\alpha _2}T)\]
\[{a_3}\prime = {a_3}(1 + {\alpha _3}T)\]
After expansion, their product will give the volume of the cuboid at temperature ${T^ \circ }C$ .
\[V\prime = {a_1}\prime {a_2}\prime {a_3}\prime = {a_1}{a_2}{a_3}(1 + {\alpha _1}T)(1 + {\alpha _2}T)(1 + {\alpha _3}T)\]
However, we know that the cuboid's initial volume is determined by the product of the edges. That is to say,
\[{V_0} = {a_1}{a_2}{a_3}\]
By neglecting small values from the above equation we get
\[V\prime \approx {V_0}(1 + ({\alpha _1} + {\alpha _2} + {\alpha _3})T)\]
Now using the formula of volume expansion
\[V = {V_0}(1 + \gamma \Delta T)\]
Comparing this from the above equation we get
\[\gamma = {\alpha _1} + {\alpha _2} + {\alpha _3}\]
Note:
Thermal expansion is the phrase used to describe the tendency of matter to change in length, area, and volume as a result of temperature changes. When molecules are heated, they move and vibrate more, increasing the space between them. The ratio of relative expansion to temperature change can be characterised as the coefficient of thermal expansion.
Complete answer:
Considering a cubical crystal structure
Let ${\alpha _1}$ ${\alpha _2}$ and ${\alpha _3}$ . be the coefficient of linear expression along the sides is ${a_1}$ ${a_2}$ and ${a_3}$.
We know for linear expansion
$a = {a_0}(1 + \alpha \Delta T)$
Where ${a_0}$ is the initial edge length
Take the temperature of the solid above to rise from ${0^ \circ }C$ to ${T^ \circ }C$
\[\Delta T = T - 0 = T\]
So for all the edges we have
\[{a_1}\prime = {a_1}(1 + {\alpha _1}T)\]
\[{a_2}\prime = {a_2}(1 + {\alpha _2}T)\]
\[{a_3}\prime = {a_3}(1 + {\alpha _3}T)\]
After expansion, their product will give the volume of the cuboid at temperature ${T^ \circ }C$ .
\[V\prime = {a_1}\prime {a_2}\prime {a_3}\prime = {a_1}{a_2}{a_3}(1 + {\alpha _1}T)(1 + {\alpha _2}T)(1 + {\alpha _3}T)\]
However, we know that the cuboid's initial volume is determined by the product of the edges. That is to say,
\[{V_0} = {a_1}{a_2}{a_3}\]
By neglecting small values from the above equation we get
\[V\prime \approx {V_0}(1 + ({\alpha _1} + {\alpha _2} + {\alpha _3})T)\]
Now using the formula of volume expansion
\[V = {V_0}(1 + \gamma \Delta T)\]
Comparing this from the above equation we get
\[\gamma = {\alpha _1} + {\alpha _2} + {\alpha _3}\]
Note:
Thermal expansion is the phrase used to describe the tendency of matter to change in length, area, and volume as a result of temperature changes. When molecules are heated, they move and vibrate more, increasing the space between them. The ratio of relative expansion to temperature change can be characterised as the coefficient of thermal expansion.
Recently Updated Pages
Why are jellyfish called medusa class 11 biology CBSE

Sliding filament theory can be best explained as aActin class 11 biology CBSE

A body is projected vertically upwards from the surface class 11 physics CBSE

A vehicle is moving on a track with constant speed class 11 physics CBSE

The area under velocitytime graph gives A Acceleration class 11 physics CBSE

The male gender of Mare is Horse class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

