
The coefficient of apparent expansion of mercury in a glass vessel is \[153\times {{10}^{-6}}/{}^\circ C\]and in a steel vessel is\[144\times {{10}^{-6}}/{}^\circ C\]. If \[\alpha \]for steel is\[12\times {{10}^{-6}}/{}^\circ C\], then that of glass is:
\[\begin{align}
& A.\,\,6\times {{10}^{-6}}/{}^\circ C \\
& B.\,\,9\times {{10}^{-6}}/{}^\circ C \\
& C.\,\,36\times {{10}^{-6}}/{}^\circ C \\
& D.\,\,27\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
Answer
536.1k+ views
Hint: The formula that we will be using to solve this problem is, the coefficient of the real expansion is equal to the sum of the coefficient of the apparent expansion and the coefficient of the expansion of the vessel. Considering the 2 situations, that is, using the glass and the steel vessel, we will compute the coefficient of the linear expansion for the glass.
Formula used:
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Complete answer:
From the given information, we have the data as follows.
The coefficient of apparent expansion of mercury in a glass vessel is \[153\times {{10}^{-6}}/{}^\circ C\]and in a steel vessel is\[144\times {{10}^{-6}}/{}^\circ C\]. \[\alpha \]for steel is\[12\times {{10}^{-6}}/{}^\circ C\].
The formula that we will be using to solve this problem is given as follows.
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Where \[{{\gamma }_{real}}\]is the coefficient of the real expansion, \[{{\gamma }_{apparent}}\]is the coefficient of the apparent expansion and \[{{\gamma }_{vessel}}\]is the coefficient of expansion of vessel.
Now, consider the vessel steel.
Consider the formula.
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Substitute the values in the above formula.
\[{{\gamma }_{real}}=144\times {{10}^{-6}}+{{\gamma }_{steel}}\]…… (1)
The coefficient of expansion of vessel steel is computed as follows.
\[\begin{align}
& {{\gamma }_{steel}}=3\alpha \\
& \Rightarrow {{\gamma }_{steel}}=3\times 12\times {{10}^{-6}} \\
& \therefore {{\gamma }_{steel}}=36\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
Substitute this value in equation (1).
\[\begin{align}
& {{\gamma }_{real}}=144\times {{10}^{-6}}+36\times {{10}^{-6}} \\
& \therefore {{\gamma }_{real}}=180\times {{10}^{-6}} \\
\end{align}\]
Now, consider the vessel glass.
Consider the formula.
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Substitute the values in the above formula.
\[\begin{align}
& 180\times {{10}^{-6}}=153\times {{10}^{-6}}+{{\gamma }_{glass}} \\
& \Rightarrow {{\gamma }_{glass}}=180\times {{10}^{-6}}-153\times {{10}^{-6}} \\
& \therefore {{\gamma }_{glass}}=27\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
We have computed the value of the volume expansion of the glass vessel. Using this value, we have to find the linear expansion of the glass.
Consider the formula.
\[\begin{align}
& {{\gamma }_{glass}}=3\alpha \\
& \Rightarrow 27\times {{10}^{-6}}=3\times \alpha \\
& \Rightarrow \alpha =\dfrac{27\times {{10}^{-6}}}{3} \\
& \therefore \alpha =9\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
\[\therefore \] The coefficient of the linear expansion of the vessel glass is, \[9\times {{10}^{-6}}/{}^\circ C\].
Thus, option (B) is correct.
Note:
The coefficient of the volume expansion is equal to thrice the coefficient of the linear expansion. The values of the coefficient of the volume and the linear expansion are different for different materials.
Formula used:
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Complete answer:
From the given information, we have the data as follows.
The coefficient of apparent expansion of mercury in a glass vessel is \[153\times {{10}^{-6}}/{}^\circ C\]and in a steel vessel is\[144\times {{10}^{-6}}/{}^\circ C\]. \[\alpha \]for steel is\[12\times {{10}^{-6}}/{}^\circ C\].
The formula that we will be using to solve this problem is given as follows.
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Where \[{{\gamma }_{real}}\]is the coefficient of the real expansion, \[{{\gamma }_{apparent}}\]is the coefficient of the apparent expansion and \[{{\gamma }_{vessel}}\]is the coefficient of expansion of vessel.
Now, consider the vessel steel.
Consider the formula.
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Substitute the values in the above formula.
\[{{\gamma }_{real}}=144\times {{10}^{-6}}+{{\gamma }_{steel}}\]…… (1)
The coefficient of expansion of vessel steel is computed as follows.
\[\begin{align}
& {{\gamma }_{steel}}=3\alpha \\
& \Rightarrow {{\gamma }_{steel}}=3\times 12\times {{10}^{-6}} \\
& \therefore {{\gamma }_{steel}}=36\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
Substitute this value in equation (1).
\[\begin{align}
& {{\gamma }_{real}}=144\times {{10}^{-6}}+36\times {{10}^{-6}} \\
& \therefore {{\gamma }_{real}}=180\times {{10}^{-6}} \\
\end{align}\]
Now, consider the vessel glass.
Consider the formula.
\[{{\gamma }_{real}}={{\gamma }_{apparent}}+{{\gamma }_{vessel}}\]
Substitute the values in the above formula.
\[\begin{align}
& 180\times {{10}^{-6}}=153\times {{10}^{-6}}+{{\gamma }_{glass}} \\
& \Rightarrow {{\gamma }_{glass}}=180\times {{10}^{-6}}-153\times {{10}^{-6}} \\
& \therefore {{\gamma }_{glass}}=27\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
We have computed the value of the volume expansion of the glass vessel. Using this value, we have to find the linear expansion of the glass.
Consider the formula.
\[\begin{align}
& {{\gamma }_{glass}}=3\alpha \\
& \Rightarrow 27\times {{10}^{-6}}=3\times \alpha \\
& \Rightarrow \alpha =\dfrac{27\times {{10}^{-6}}}{3} \\
& \therefore \alpha =9\times {{10}^{-6}}/{}^\circ C \\
\end{align}\]
\[\therefore \] The coefficient of the linear expansion of the vessel glass is, \[9\times {{10}^{-6}}/{}^\circ C\].
Thus, option (B) is correct.
Note:
The coefficient of the volume expansion is equal to thrice the coefficient of the linear expansion. The values of the coefficient of the volume and the linear expansion are different for different materials.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

