
The coefficient of \[{{a}^{8}}{{b}^{4}}{{c}^{9}}{{d}^{9}}\] in \[{{\left( abc+abd+acd+bcd \right)}^{10}}\] is
(A) \[10!\]
(B) \[\dfrac{10!}{8!4!9!9!}\]
(C) 2520
(D) none of these.
Answer
584.4k+ views
Hint: The general term of the expression \[{{\left( a+b+c+d \right)}^{10}}\] is given by the formula \[\dfrac{10!}{p!q!r!s!}{{a}^{p}}{{b}^{q}}{{c}^{r}}{{d}^{s}}\] . Now, replace \[a\] by \[abc\] , \[b\] by \[abd\] , \[c\] by \[acd\] , and \[d\] by \[bcd\] in the formula. Now, get the exponents of a, b, c, and d from the expression \[\dfrac{10!}{p!q!r!s!}{{\left( abc \right)}^{p}}{{\left( abd \right)}^{q}}{{\left( acd \right)}^{r}}{{\left( bcd \right)}^{s}}\] and then compare with the exponents of a, b, c, and d from the expression \[{{a}^{8}}{{b}^{4}}{{c}^{9}}{{d}^{9}}\] . Now, solve it further and get the value of p, q, r, and s. Then, put the value of p, q, r, and s in the expression \[\dfrac{10!}{p!q!r!s!}{{a}^{p}}{{b}^{q}}{{c}^{r}}{{d}^{s}}\] and get the coefficient of \[{{a}^{8}}{{b}^{4}}{{c}^{9}}{{d}^{9}}\].
Complete step by step solution:
According to the question, our given expression is \[{{\left( abc+abd+acd+bcd \right)}^{10}}\].
We know the formula that the general term of the expression \[{{\left( a+b+c+d \right)}^{10}}\] is given by
\[\dfrac{10!}{p!q!r!s!}{{a}^{p}}{{b}^{q}}{{c}^{r}}{{d}^{s}}\] ……………….(1)
Now, replacing \[a\] by \[abc\] , \[b\] by \[abd\] , \[c\] by \[acd\] , and \[d\] by \[bcd\] in equation (1), we get,
The general term of the expression \[{{\left( abc+abd+acd+bcd \right)}^{10}}\] is given by \[\dfrac{10!}{p!q!r!s!}{{\left( abc \right)}^{p}}{{\left( abd \right)}^{q}}{{\left( acd \right)}^{r}}{{\left( bcd \right)}^{s}}\] ………………(2)
Simplifying equation (2), we get
\[\begin{align}
& \dfrac{10!}{p!q!r!s!}{{\left( abc \right)}^{p}}{{\left( abd \right)}^{q}}{{\left( acd \right)}^{r}}{{\left( bcd \right)}^{s}} \\
& =\dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{p}}{{\left( a \right)}^{q}}{{\left( a \right)}^{r}}{{\left( b \right)}^{p}}{{\left( b \right)}^{q}}{{\left( b \right)}^{s}}{{\left( c \right)}^{p}}{{\left( c \right)}^{r}}{{\left( c \right)}^{s}}{{\left( d \right)}^{q}}{{\left( d \right)}^{r}}{{\left( d \right)}^{s}} \\
& =\dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{\left( p+q+r \right)}}{{\left( b \right)}^{\left( p+q+s \right)}}{{\left( c \right)}^{\left( p+r+s \right)}}{{\left( d \right)}^{\left( q+r+s \right)}} \\
\end{align}\]
So, the general term of \[{{\left( abc+abd+acd+bcd \right)}^{10}}\] is \[\dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{\left( p+q+r \right)}}{{\left( b \right)}^{\left( p+q+s \right)}}{{\left( c \right)}^{\left( p+r+s \right)}}{{\left( d \right)}^{\left( q+r+s \right)}}\] …………………..(3)
It is given that we have to find the coefficient of \[{{a}^{8}}{{b}^{4}}{{c}^{9}}{{d}^{9}}\] ………………(4).
So, we have to compare the exponents of a, b, c, and d of equation (3) and equation (4).
On comparing the exponents of a, b, c, and d of equation (3) and equation (4), we get
\[p+q+r=8\] ………………(5)
\[p+q+s=4\] ……………….(6)
\[p+r+s=9\] ………………..(7)
\[q+r+s=9\] ………………..(8)
Subtracting equation (7) from equation (8), we get
\[\begin{align}
& \left( q+r+s \right)-\left( p+r+s \right)=9-9 \\
& \Rightarrow q-p=0 \\
\end{align}\]
\[\Rightarrow q=p\] ………………………(9)
Now, subtracting equation (6) from equation (5)
\[\begin{align}
& \left( p+q+r \right)-\left( p+q+s \right)=8-4 \\
& \Rightarrow r-s=4 \\
\end{align}\]
\[\Rightarrow r=s+4\] …………………….(10)
Now, subtracting equation (5) from equation (8), we get
\[\begin{align}
& \left( q+r+s \right)-\left( p+q+r \right)=9-8 \\
& \Rightarrow s-p=1 \\
\end{align}\]
\[\Rightarrow s=p+1\] ……………….(11)
Putting the value of s from equation (11), in equation (10), we get
\[\begin{align}
& \Rightarrow r=s+4 \\
& \Rightarrow r=p+1+4 \\
\end{align}\]
\[\Rightarrow r=p+5\] ………………………(12)
Putting the value of q and r from equation (9) and equation (12), in equation (5), we get
From equation (5), equation (9), and equation (12), we have,
\[\begin{align}
& p+q+r=8 \\
& \Rightarrow p+p+p+5=8 \\
& \Rightarrow 3p=3 \\
& \Rightarrow p=1 \\
\end{align}\]
Now, put the value of p in equation (9), we get
\[\begin{align}
& q=p \\
& \Rightarrow q=1 \\
\end{align}\]
Now, put the value of p in equation (11), we get
\[\begin{align}
& s=p+1 \\
& \Rightarrow s=1+1 \\
& \Rightarrow s=2 \\
\end{align}\]
Now, put the value of p in equation (12), we get
\[\begin{align}
& r=p+5 \\
& \Rightarrow r=1+5 \\
& \Rightarrow r=6 \\
\end{align}\]
So, the value of p, q, r, and s is 1, 1, 6, and 2.
Now, putting the value of p, q, r, and s in equation (3), we get
\[\begin{align}
& \dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{\left( p+q+r \right)}}{{\left( b \right)}^{\left( p+q+s \right)}}{{\left( c \right)}^{\left( p+r+s \right)}}{{\left( d \right)}^{\left( q+r+s \right)}} \\
& =\dfrac{10!}{1!1!6!2!}{{\left( a \right)}^{\left( 1+2+5 \right)}}{{\left( b \right)}^{\left( 1+1+2 \right)}}{{\left( c \right)}^{\left( 1+6+2 \right)}}{{\left( d \right)}^{\left( 1+6+2 \right)}} \\
& =\dfrac{10!}{1!1!6!2!}{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
& =\dfrac{\left( 6! \right)\times 7\times 8\times 9\times 10}{6!2!}{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
& =7\times 4\times 9\times 10{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
& =2520{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
\end{align}\]
Therefore, the coefficient of \[{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}}\] is 2520.
Hence, the correct option is 2520.
Note: To solve this question, one may think to take a as common on whole make the expression\[{{\left( abc+abd+acd+bcd \right)}^{10}}\] as \[{{a}^{10}}{{b}^{10}}{{c}^{10}}{{\left( 1+\dfrac{abd+acd+bcd}{abc} \right)}^{10}}\] and then think to apply the binomial expansion of \[{{\left( 1+x \right)}^{n}}\] . If we do so then our expression will become complex. So, here formula should be used in order to reduce the complexity.
Complete step by step solution:
According to the question, our given expression is \[{{\left( abc+abd+acd+bcd \right)}^{10}}\].
We know the formula that the general term of the expression \[{{\left( a+b+c+d \right)}^{10}}\] is given by
\[\dfrac{10!}{p!q!r!s!}{{a}^{p}}{{b}^{q}}{{c}^{r}}{{d}^{s}}\] ……………….(1)
Now, replacing \[a\] by \[abc\] , \[b\] by \[abd\] , \[c\] by \[acd\] , and \[d\] by \[bcd\] in equation (1), we get,
The general term of the expression \[{{\left( abc+abd+acd+bcd \right)}^{10}}\] is given by \[\dfrac{10!}{p!q!r!s!}{{\left( abc \right)}^{p}}{{\left( abd \right)}^{q}}{{\left( acd \right)}^{r}}{{\left( bcd \right)}^{s}}\] ………………(2)
Simplifying equation (2), we get
\[\begin{align}
& \dfrac{10!}{p!q!r!s!}{{\left( abc \right)}^{p}}{{\left( abd \right)}^{q}}{{\left( acd \right)}^{r}}{{\left( bcd \right)}^{s}} \\
& =\dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{p}}{{\left( a \right)}^{q}}{{\left( a \right)}^{r}}{{\left( b \right)}^{p}}{{\left( b \right)}^{q}}{{\left( b \right)}^{s}}{{\left( c \right)}^{p}}{{\left( c \right)}^{r}}{{\left( c \right)}^{s}}{{\left( d \right)}^{q}}{{\left( d \right)}^{r}}{{\left( d \right)}^{s}} \\
& =\dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{\left( p+q+r \right)}}{{\left( b \right)}^{\left( p+q+s \right)}}{{\left( c \right)}^{\left( p+r+s \right)}}{{\left( d \right)}^{\left( q+r+s \right)}} \\
\end{align}\]
So, the general term of \[{{\left( abc+abd+acd+bcd \right)}^{10}}\] is \[\dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{\left( p+q+r \right)}}{{\left( b \right)}^{\left( p+q+s \right)}}{{\left( c \right)}^{\left( p+r+s \right)}}{{\left( d \right)}^{\left( q+r+s \right)}}\] …………………..(3)
It is given that we have to find the coefficient of \[{{a}^{8}}{{b}^{4}}{{c}^{9}}{{d}^{9}}\] ………………(4).
So, we have to compare the exponents of a, b, c, and d of equation (3) and equation (4).
On comparing the exponents of a, b, c, and d of equation (3) and equation (4), we get
\[p+q+r=8\] ………………(5)
\[p+q+s=4\] ……………….(6)
\[p+r+s=9\] ………………..(7)
\[q+r+s=9\] ………………..(8)
Subtracting equation (7) from equation (8), we get
\[\begin{align}
& \left( q+r+s \right)-\left( p+r+s \right)=9-9 \\
& \Rightarrow q-p=0 \\
\end{align}\]
\[\Rightarrow q=p\] ………………………(9)
Now, subtracting equation (6) from equation (5)
\[\begin{align}
& \left( p+q+r \right)-\left( p+q+s \right)=8-4 \\
& \Rightarrow r-s=4 \\
\end{align}\]
\[\Rightarrow r=s+4\] …………………….(10)
Now, subtracting equation (5) from equation (8), we get
\[\begin{align}
& \left( q+r+s \right)-\left( p+q+r \right)=9-8 \\
& \Rightarrow s-p=1 \\
\end{align}\]
\[\Rightarrow s=p+1\] ……………….(11)
Putting the value of s from equation (11), in equation (10), we get
\[\begin{align}
& \Rightarrow r=s+4 \\
& \Rightarrow r=p+1+4 \\
\end{align}\]
\[\Rightarrow r=p+5\] ………………………(12)
Putting the value of q and r from equation (9) and equation (12), in equation (5), we get
From equation (5), equation (9), and equation (12), we have,
\[\begin{align}
& p+q+r=8 \\
& \Rightarrow p+p+p+5=8 \\
& \Rightarrow 3p=3 \\
& \Rightarrow p=1 \\
\end{align}\]
Now, put the value of p in equation (9), we get
\[\begin{align}
& q=p \\
& \Rightarrow q=1 \\
\end{align}\]
Now, put the value of p in equation (11), we get
\[\begin{align}
& s=p+1 \\
& \Rightarrow s=1+1 \\
& \Rightarrow s=2 \\
\end{align}\]
Now, put the value of p in equation (12), we get
\[\begin{align}
& r=p+5 \\
& \Rightarrow r=1+5 \\
& \Rightarrow r=6 \\
\end{align}\]
So, the value of p, q, r, and s is 1, 1, 6, and 2.
Now, putting the value of p, q, r, and s in equation (3), we get
\[\begin{align}
& \dfrac{10!}{p!q!r!s!}{{\left( a \right)}^{\left( p+q+r \right)}}{{\left( b \right)}^{\left( p+q+s \right)}}{{\left( c \right)}^{\left( p+r+s \right)}}{{\left( d \right)}^{\left( q+r+s \right)}} \\
& =\dfrac{10!}{1!1!6!2!}{{\left( a \right)}^{\left( 1+2+5 \right)}}{{\left( b \right)}^{\left( 1+1+2 \right)}}{{\left( c \right)}^{\left( 1+6+2 \right)}}{{\left( d \right)}^{\left( 1+6+2 \right)}} \\
& =\dfrac{10!}{1!1!6!2!}{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
& =\dfrac{\left( 6! \right)\times 7\times 8\times 9\times 10}{6!2!}{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
& =7\times 4\times 9\times 10{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
& =2520{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}} \\
\end{align}\]
Therefore, the coefficient of \[{{\left( a \right)}^{8}}{{\left( b \right)}^{4}}{{\left( c \right)}^{9}}{{\left( d \right)}^{9}}\] is 2520.
Hence, the correct option is 2520.
Note: To solve this question, one may think to take a as common on whole make the expression\[{{\left( abc+abd+acd+bcd \right)}^{10}}\] as \[{{a}^{10}}{{b}^{10}}{{c}^{10}}{{\left( 1+\dfrac{abd+acd+bcd}{abc} \right)}^{10}}\] and then think to apply the binomial expansion of \[{{\left( 1+x \right)}^{n}}\] . If we do so then our expression will become complex. So, here formula should be used in order to reduce the complexity.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

