Answer
Verified
455.7k+ views
Hint: Assume the cost of one bat be x rupees and the cost of one ball be y rupees. Then we will formulate the given conditions into equations involving x and y and then solve the equations by elimination method and determining the value of x and y.
Complete step-by-step answer:
Let the cost of one bat be x rupees and the cost of one ball be y rupees.
In Algebraic form:
Then the equation for one bat and 2 balls costing Rs.300 will be represented as:
$x + 2y = 300{\text{ }}...{\text{(1)}}$
$ \Rightarrow x = 300 - 2y{\text{ }}...{\text{(2)}}$
And the other equation for 2 bats and 3 balls of the same kind costing Rs.525 can be represented as:
$2x + 3y = 525{\text{ }}...{\text{(3)}}$
In graphical method: In this, we will substitute 2 to 3 values of y and get the table following for:
$x+2y = 300$
$2x + 3y = 525$
Now, putting the value of equation (2) in equation (3), we will get:
$
2(300 - 2y) + 3y = 525 \\
\Rightarrow y = 75 \\
$
And substituting the value of $y = 75$ in (2), we will get $x = 150$.
So, the coach will pay Rs.150 for a bat and Rs.75 for a ball.
Note: Whenever there are 2 equations in 2 variables, the easiest method to solve them is by the elimination method.
Put the value of one variable from one equation into the second equation to get the value of the second variable.
In the graph, the point at which both the lines are intersecting will give the values for x and y.
It can also be verified by solving the equations algebraically.
Complete step-by-step answer:
Let the cost of one bat be x rupees and the cost of one ball be y rupees.
In Algebraic form:
Then the equation for one bat and 2 balls costing Rs.300 will be represented as:
$x + 2y = 300{\text{ }}...{\text{(1)}}$
$ \Rightarrow x = 300 - 2y{\text{ }}...{\text{(2)}}$
And the other equation for 2 bats and 3 balls of the same kind costing Rs.525 can be represented as:
$2x + 3y = 525{\text{ }}...{\text{(3)}}$
In graphical method: In this, we will substitute 2 to 3 values of y and get the table following for:
$x+2y = 300$
x | 0 | 300 |
y | 150 | 0 |
$2x + 3y = 525$
x | 0 | 262.5 |
y | 175 | 0 |
Now, putting the value of equation (2) in equation (3), we will get:
$
2(300 - 2y) + 3y = 525 \\
\Rightarrow y = 75 \\
$
And substituting the value of $y = 75$ in (2), we will get $x = 150$.
So, the coach will pay Rs.150 for a bat and Rs.75 for a ball.
Note: Whenever there are 2 equations in 2 variables, the easiest method to solve them is by the elimination method.
Put the value of one variable from one equation into the second equation to get the value of the second variable.
In the graph, the point at which both the lines are intersecting will give the values for x and y.
It can also be verified by solving the equations algebraically.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE