
The circle C has equation \[{{x}^{2}}+{{y}^{2}}+2x+2y-32=0\] . The point $(-4,k)$ lies on C. Find the two real values of k.
Answer
611.4k+ views
Hint: Any point lying on the circle satisfies the given equation of the circle. So put the given point in the equation of the circle and solve it. Using this concept we will get the correct answer.
Complete step by step solution:
The given equation of circle
${{x}^{2}}+{{y}^{2}}+2x+2y-32=0---(1)$
As point $(-4,k)$ lies on the circle
so it satisfy the equation (1)
Hence we can write $x=-4,\text{ y=k}$ in the equation (1)
$\begin{align}
& \Rightarrow \text{ (-4}{{\text{)}}^{\text{2}}}\text{+}{{\text{k}}^{\text{2}}}\text{+2(-4)+2k-32=0} \\
& \Rightarrow \text{ 16+}{{\text{k}}^{\text{2}}}\text{-8+2k-32=0} \\
& \Rightarrow {{\text{k}}^{\text{2}}}\text{+2k-24=0} \\
\end{align}$
Here we get a quadratic equation so we have to find here the roots of quadratic equation
As we know
$D={{b}^{2}}-4ac$
Here $a=1,b=2,c=-24$ so
$\begin{align}
& D={{(2)}^{2}}-4(1)(-24) \\
& \Rightarrow D=4+96 \\
& \Rightarrow D=100 \\
\end{align}$
Since
$D\ge 0$
Hence roots are real.
Now factorize the quadratic equation by splitting middle term we can write
$\begin{align}
& \Rightarrow {{k}^{2}}+2k-24=0 \\
& \Rightarrow {{k}^{2}}+6k-4k-24=0 \\
& \Rightarrow k(k+6)-4(k+6)=0 \\
& \Rightarrow (k-4)(k+6)=0 \\
& \Rightarrow k=4 \\
& \Rightarrow k=-6 \\
& \\
\end{align}$
Hence we have two values of k.
$\begin{align}
& k=4 \\
& k=-6 \\
\end{align}$
Note: To solve this type of problem students should know that we can find the roots of quadratic equations by using the following formula and this is an alternative method for this problem.
$\Rightarrow {{x}_{1,2}}=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Complete step by step solution:
The given equation of circle
${{x}^{2}}+{{y}^{2}}+2x+2y-32=0---(1)$
As point $(-4,k)$ lies on the circle
so it satisfy the equation (1)
Hence we can write $x=-4,\text{ y=k}$ in the equation (1)
$\begin{align}
& \Rightarrow \text{ (-4}{{\text{)}}^{\text{2}}}\text{+}{{\text{k}}^{\text{2}}}\text{+2(-4)+2k-32=0} \\
& \Rightarrow \text{ 16+}{{\text{k}}^{\text{2}}}\text{-8+2k-32=0} \\
& \Rightarrow {{\text{k}}^{\text{2}}}\text{+2k-24=0} \\
\end{align}$
Here we get a quadratic equation so we have to find here the roots of quadratic equation
As we know
$D={{b}^{2}}-4ac$
Here $a=1,b=2,c=-24$ so
$\begin{align}
& D={{(2)}^{2}}-4(1)(-24) \\
& \Rightarrow D=4+96 \\
& \Rightarrow D=100 \\
\end{align}$
Since
$D\ge 0$
Hence roots are real.
Now factorize the quadratic equation by splitting middle term we can write
$\begin{align}
& \Rightarrow {{k}^{2}}+2k-24=0 \\
& \Rightarrow {{k}^{2}}+6k-4k-24=0 \\
& \Rightarrow k(k+6)-4(k+6)=0 \\
& \Rightarrow (k-4)(k+6)=0 \\
& \Rightarrow k=4 \\
& \Rightarrow k=-6 \\
& \\
\end{align}$
Hence we have two values of k.
$\begin{align}
& k=4 \\
& k=-6 \\
\end{align}$
Note: To solve this type of problem students should know that we can find the roots of quadratic equations by using the following formula and this is an alternative method for this problem.
$\Rightarrow {{x}_{1,2}}=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

