
The characteristic roots of the matrix \[A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&{ - 4}&2 \\
0&0&7
\end{array}} \right]\]
is given by :-
(A) \[{\mathbf{1}}, - {\mathbf{4}},{\text{ }}{\mathbf{7}}\]
(B) \[{\mathbf{1}},{\text{ }}{\mathbf{4}},{\text{ }} - {\text{ }}{\mathbf{7}}\]
(C) \[{\mathbf{1}},{\text{ }}{\mathbf{4}},{\text{ }}{\mathbf{7}}\]
(D) \[ - {\mathbf{1}},{\text{ }} - {\mathbf{4}},{\text{ }} - {\mathbf{7}}\]
Answer
512.1k+ views
Hint :- To solve this,first consider a square matrix and then proceed
If A be a Square Matrix
I be a unit matrix of same order
Then, $\left| {A - \lambda I} \right|$ is called the Characteristic Polynomial of Matrix.
And $\left| {A - \lambda I} \right| = 0$ is called Characteristic Roots of Matrix.
Complete step by step solution:
\[A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&{ - 4}&2 \\
0&0&7
\end{array}} \right];I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
Here, A is given matrix and I is used matrix of $3$ order because A is $3 \times 3$
Now, we multiply by $\lambda $with the unit matrix. $\lambda $
\[\lambda I = \left[ {\begin{array}{*{20}{c}}
\lambda &0&0 \\
0&\lambda &0 \\
0&0&\lambda
\end{array}} \right]\]
Now from hint
$\left| {A - \lambda I} \right| = 0$
\[ \Rightarrow \left| {A - \lambda I} \right| = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&{ - 4}&2 \\
0&0&7
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
\lambda &0&0 \\
0&\lambda &0 \\
0&0&\lambda
\end{array}} \right] = 0\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - \lambda }&2&3 \\
0&{ - 4 - \lambda }&2 \\
0&0&{7 - \lambda }
\end{array}} \right] = 0\]
By solving
$(1 - \lambda )[( - 4 - \lambda )(7 - \lambda ) - 0] - 2[0 - 0] + 3[0 - 0] = 0$
$(1 - \lambda )( - 4 - \lambda )(7 - \lambda ) = 0$
Because we get cubic equation of $\lambda $
So, there will three values of $\lambda $
$1 - \lambda = 0; - 4 - \lambda = 0;7 - \lambda = 0$
$\lambda = 1;\lambda = - 4;\lambda = 7$
$\lambda = 1, - 4,7$
So right option is (A) $1, - 4,7$
Therefore characteristic roots of $A = 1, - 4,7$
Note – If A is on the Square Matrix of n then $\lambda $has maximum n values.
So, In this question we can find three values of $\lambda $. The number of values also depends on the matrix.So please give importance to the order of the matrix being considered
If A be a Square Matrix
I be a unit matrix of same order
Then, $\left| {A - \lambda I} \right|$ is called the Characteristic Polynomial of Matrix.
And $\left| {A - \lambda I} \right| = 0$ is called Characteristic Roots of Matrix.
Complete step by step solution:
\[A = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&{ - 4}&2 \\
0&0&7
\end{array}} \right];I = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]\]
Here, A is given matrix and I is used matrix of $3$ order because A is $3 \times 3$
Now, we multiply by $\lambda $with the unit matrix. $\lambda $
\[\lambda I = \left[ {\begin{array}{*{20}{c}}
\lambda &0&0 \\
0&\lambda &0 \\
0&0&\lambda
\end{array}} \right]\]
Now from hint
$\left| {A - \lambda I} \right| = 0$
\[ \Rightarrow \left| {A - \lambda I} \right| = \left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&{ - 4}&2 \\
0&0&7
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
\lambda &0&0 \\
0&\lambda &0 \\
0&0&\lambda
\end{array}} \right] = 0\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - \lambda }&2&3 \\
0&{ - 4 - \lambda }&2 \\
0&0&{7 - \lambda }
\end{array}} \right] = 0\]
By solving
$(1 - \lambda )[( - 4 - \lambda )(7 - \lambda ) - 0] - 2[0 - 0] + 3[0 - 0] = 0$
$(1 - \lambda )( - 4 - \lambda )(7 - \lambda ) = 0$
Because we get cubic equation of $\lambda $
So, there will three values of $\lambda $
$1 - \lambda = 0; - 4 - \lambda = 0;7 - \lambda = 0$
$\lambda = 1;\lambda = - 4;\lambda = 7$
$\lambda = 1, - 4,7$
So right option is (A) $1, - 4,7$
Therefore characteristic roots of $A = 1, - 4,7$
Note – If A is on the Square Matrix of n then $\lambda $has maximum n values.
So, In this question we can find three values of $\lambda $. The number of values also depends on the matrix.So please give importance to the order of the matrix being considered
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
