
The average value of current given by $ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $, from $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $ is how many times of $ {{\text{I}}_{\text{m}}} $?
Answer
524.1k+ views
Hint: To find the number of times the average value becomes with respect to the given time interval, we calculate the integral of the general form of an average of a function in the interval and compare it to $ {{\text{I}}_{\text{m}}} $.
Complete step by step answer:
We integrate the sine function and substitute the intervals given in the above. The integration of a sine function is given by, sin x = - cos x.
Given data,
$ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $
Time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $ .
The average value of a function ‘f’ in a certain time interval from ‘a’ to ‘b’ is given by the formula –
$ {{\text{f}}_{{\text{avg}}}} = \dfrac{{\int\limits_{\text{a}}^{\text{b}} {{\text{fdt}}} }}{{\int\limits_{\text{a}}^{\text{b}} {{\text{dt}}} }} $ .
Here we are supposed to find the average value of current ‘i’ from a time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{idt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
Given value of current is $ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $ , we substitute this in the above equation we get
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {\left( {{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}} \right){\text{dt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left[ { - {\text{cos}}\omega {\text{t}}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\omega }}}{{\left[ {\text{t}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left( { - 1} \right) \times \left[ {{\text{cos}}\omega \times \dfrac{{3\pi }}{{2\omega }} - {\text{cos}}\omega \times \dfrac{\pi }{{2\omega }}} \right]}}{\omega }}}{{\left[ {\dfrac{{3\pi }}{{2\omega }} - \dfrac{\pi }{{2\omega }}} \right]}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {{\text{cos}}\dfrac{{3\pi }}{2} - {\text{cos}}\dfrac{\pi }{2}} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {0 - 0} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = 0}} $
Hence the average value of current is zero times of $ {{\text{I}}_{\text{m}}} $ .
Note:
In order to answer this type of question the key is to know the general formula of average value of a function using integration.
Integral of a function of the form $ \int\limits_{\text{a}}^{\text{b}} {{\text{dx}}} $ is given by $ \left[ {\text{x}} \right]_{\text{a}}^{\text{b}} = \left[ {{\text{b - a}}} \right] $ .
Integral of a function of the form $ \int\limits_{\text{p}}^{\text{q}} {{\text{sin}}\left( {{\text{bx}}} \right)} {\text{ dx}} $ is given by $ \left[ {\dfrac{{{\text{ - cosbx}}}}{{\text{b}}}} \right]_{\text{p}}^{\text{q}} $ .
Also the values of $ {\text{cos}}\dfrac{{3\pi }}{2}{\text{ and cos}}\dfrac{\pi }{2} $ is equal to zero and is obtained from the trigonometric table of cosine function.
Complete step by step answer:
We integrate the sine function and substitute the intervals given in the above. The integration of a sine function is given by, sin x = - cos x.
Given data,
$ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $
Time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $ .
The average value of a function ‘f’ in a certain time interval from ‘a’ to ‘b’ is given by the formula –
$ {{\text{f}}_{{\text{avg}}}} = \dfrac{{\int\limits_{\text{a}}^{\text{b}} {{\text{fdt}}} }}{{\int\limits_{\text{a}}^{\text{b}} {{\text{dt}}} }} $ .
Here we are supposed to find the average value of current ‘i’ from a time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{idt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
Given value of current is $ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $ , we substitute this in the above equation we get
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {\left( {{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}} \right){\text{dt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left[ { - {\text{cos}}\omega {\text{t}}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\omega }}}{{\left[ {\text{t}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left( { - 1} \right) \times \left[ {{\text{cos}}\omega \times \dfrac{{3\pi }}{{2\omega }} - {\text{cos}}\omega \times \dfrac{\pi }{{2\omega }}} \right]}}{\omega }}}{{\left[ {\dfrac{{3\pi }}{{2\omega }} - \dfrac{\pi }{{2\omega }}} \right]}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {{\text{cos}}\dfrac{{3\pi }}{2} - {\text{cos}}\dfrac{\pi }{2}} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {0 - 0} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = 0}} $
Hence the average value of current is zero times of $ {{\text{I}}_{\text{m}}} $ .
Note:
In order to answer this type of question the key is to know the general formula of average value of a function using integration.
Integral of a function of the form $ \int\limits_{\text{a}}^{\text{b}} {{\text{dx}}} $ is given by $ \left[ {\text{x}} \right]_{\text{a}}^{\text{b}} = \left[ {{\text{b - a}}} \right] $ .
Integral of a function of the form $ \int\limits_{\text{p}}^{\text{q}} {{\text{sin}}\left( {{\text{bx}}} \right)} {\text{ dx}} $ is given by $ \left[ {\dfrac{{{\text{ - cosbx}}}}{{\text{b}}}} \right]_{\text{p}}^{\text{q}} $ .
Also the values of $ {\text{cos}}\dfrac{{3\pi }}{2}{\text{ and cos}}\dfrac{\pi }{2} $ is equal to zero and is obtained from the trigonometric table of cosine function.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
