
The average value of current given by $ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $, from $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $ is how many times of $ {{\text{I}}_{\text{m}}} $?
Answer
587.4k+ views
Hint: To find the number of times the average value becomes with respect to the given time interval, we calculate the integral of the general form of an average of a function in the interval and compare it to $ {{\text{I}}_{\text{m}}} $.
Complete step by step answer:
We integrate the sine function and substitute the intervals given in the above. The integration of a sine function is given by, sin x = - cos x.
Given data,
$ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $
Time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $ .
The average value of a function ‘f’ in a certain time interval from ‘a’ to ‘b’ is given by the formula –
$ {{\text{f}}_{{\text{avg}}}} = \dfrac{{\int\limits_{\text{a}}^{\text{b}} {{\text{fdt}}} }}{{\int\limits_{\text{a}}^{\text{b}} {{\text{dt}}} }} $ .
Here we are supposed to find the average value of current ‘i’ from a time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{idt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
Given value of current is $ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $ , we substitute this in the above equation we get
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {\left( {{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}} \right){\text{dt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left[ { - {\text{cos}}\omega {\text{t}}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\omega }}}{{\left[ {\text{t}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left( { - 1} \right) \times \left[ {{\text{cos}}\omega \times \dfrac{{3\pi }}{{2\omega }} - {\text{cos}}\omega \times \dfrac{\pi }{{2\omega }}} \right]}}{\omega }}}{{\left[ {\dfrac{{3\pi }}{{2\omega }} - \dfrac{\pi }{{2\omega }}} \right]}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {{\text{cos}}\dfrac{{3\pi }}{2} - {\text{cos}}\dfrac{\pi }{2}} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {0 - 0} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = 0}} $
Hence the average value of current is zero times of $ {{\text{I}}_{\text{m}}} $ .
Note:
In order to answer this type of question the key is to know the general formula of average value of a function using integration.
Integral of a function of the form $ \int\limits_{\text{a}}^{\text{b}} {{\text{dx}}} $ is given by $ \left[ {\text{x}} \right]_{\text{a}}^{\text{b}} = \left[ {{\text{b - a}}} \right] $ .
Integral of a function of the form $ \int\limits_{\text{p}}^{\text{q}} {{\text{sin}}\left( {{\text{bx}}} \right)} {\text{ dx}} $ is given by $ \left[ {\dfrac{{{\text{ - cosbx}}}}{{\text{b}}}} \right]_{\text{p}}^{\text{q}} $ .
Also the values of $ {\text{cos}}\dfrac{{3\pi }}{2}{\text{ and cos}}\dfrac{\pi }{2} $ is equal to zero and is obtained from the trigonometric table of cosine function.
Complete step by step answer:
We integrate the sine function and substitute the intervals given in the above. The integration of a sine function is given by, sin x = - cos x.
Given data,
$ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $
Time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $ .
The average value of a function ‘f’ in a certain time interval from ‘a’ to ‘b’ is given by the formula –
$ {{\text{f}}_{{\text{avg}}}} = \dfrac{{\int\limits_{\text{a}}^{\text{b}} {{\text{fdt}}} }}{{\int\limits_{\text{a}}^{\text{b}} {{\text{dt}}} }} $ .
Here we are supposed to find the average value of current ‘i’ from a time interval $ {\text{t = }}\dfrac{\pi }{{2\omega }} $ to $ {\text{t = }}\dfrac{{3\pi }}{{2\omega }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{idt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
Given value of current is $ {\text{i = }}{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}} $ , we substitute this in the above equation we get
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {\left( {{{\text{I}}_{\text{m}}}{\text{ sin }}\omega {\text{t}}} \right){\text{dt}}} }}{{\int\limits_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}} {{\text{dt}}} }}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left[ { - {\text{cos}}\omega {\text{t}}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\omega }}}{{\left[ {\text{t}} \right]_{\dfrac{\pi }{{2\omega }}}^{\dfrac{{3\pi }}{{2\omega }}}}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = }}\dfrac{{{{\text{I}}_{\text{m}}} \times \dfrac{{\left( { - 1} \right) \times \left[ {{\text{cos}}\omega \times \dfrac{{3\pi }}{{2\omega }} - {\text{cos}}\omega \times \dfrac{\pi }{{2\omega }}} \right]}}{\omega }}}{{\left[ {\dfrac{{3\pi }}{{2\omega }} - \dfrac{\pi }{{2\omega }}} \right]}}{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {{\text{cos}}\dfrac{{3\pi }}{2} - {\text{cos}}\dfrac{\pi }{2}} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = - }}\dfrac{{{{\text{I}}_{\text{m}}}}}{\pi } \times \left[ {0 - 0} \right]{\text{ }} $
$ \Rightarrow {{\text{i}}_{{\text{avg}}}}{\text{ = 0}} $
Hence the average value of current is zero times of $ {{\text{I}}_{\text{m}}} $ .
Note:
In order to answer this type of question the key is to know the general formula of average value of a function using integration.
Integral of a function of the form $ \int\limits_{\text{a}}^{\text{b}} {{\text{dx}}} $ is given by $ \left[ {\text{x}} \right]_{\text{a}}^{\text{b}} = \left[ {{\text{b - a}}} \right] $ .
Integral of a function of the form $ \int\limits_{\text{p}}^{\text{q}} {{\text{sin}}\left( {{\text{bx}}} \right)} {\text{ dx}} $ is given by $ \left[ {\dfrac{{{\text{ - cosbx}}}}{{\text{b}}}} \right]_{\text{p}}^{\text{q}} $ .
Also the values of $ {\text{cos}}\dfrac{{3\pi }}{2}{\text{ and cos}}\dfrac{\pi }{2} $ is equal to zero and is obtained from the trigonometric table of cosine function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

